# GhostNET **Repository Path**: zhao-xiao-pang/Efficient-AI-Backbones ## Basic Information - **Project Name**: GhostNET - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-02-29 - **Last Updated**: 2024-02-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Efficient AI Backbones including GhostNet, TNT (Transformer in Transformer), AugViT, WaveMLP and ViG developed by Huawei Noah's Ark Lab. - [News](#news) - [Model zoo](#model-zoo) - [Citation](#citation) - [Other versions](#other-versions-of-ghostnet) ## News 2022/12/01 The code of NeurIPS 2022 (Spotlight) [GhostNetV2](https://arxiv.org/abs/2211.12905) is released at [./ghostnetv2_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch). 2022/11/13 The code of IJCV 2022 [G-Ghost RegNet](https://arxiv.org/abs/2201.03297) is released at [./g_ghost_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/g_ghost_pytorch). 2022/06/17 The code of NeurIPS 2022 [Vision GNN (ViG)](https://arxiv.org/abs/2206.00272) is released at [./vig_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch). 2022/02/06 Transformer in Transformer (TNT) is selected as the **[Most Influential NeurIPS 2021 Papers](https://www.paperdigest.org/2022/02/most-influential-nips-papers-2022-02/)**. 2021/09/28 The paper of TNT (Transformer in Transformer) is accepted by [NeurIPS 2021](https://arxiv.org/abs/2103.00112). 2021/09/18 The extended version of [Versatile Filters](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/versatile_filters) is accepted by T-PAMI. 2021/08/30 GhostNet paper is selected as the **[Most Influential CVPR 2020 Papers](https://www.paperdigest.org/2021/08/most-influential-cvpr-papers-2021-08/)**. 2020/10/31 GhostNet+TinyNet achieves better performance. See details in our NeurIPS 2020 paper: [arXiv](https://arxiv.org/abs/2010.14819). ## Model zoo | Model | Paper | Pytorch code | MindSpore code | | - | - | - | - | | GhostNet | GhostNet: More Features from Cheap Operations. [[CVPR 2020]](https://arxiv.org/abs/1911.11907) | [./ghostnet_pytorch](https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/ghostnet) | | GhostNetV2 | GhostNetV2: Enhance Cheap Operation with Long-Range Attention. [[NeurIPS 2022 Spotlight]](https://arxiv.org/abs/2211.12905) | [./ghostnetv2_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/ghostnetv2) | | G-GhostNet | GhostNets on Heterogeneous Devices via Cheap Operations. [[IJCV 2022]](https://arxiv.org/abs/2201.03297) | [./g_ghost_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/g_ghost_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/ghostnet_d) | | TinyNet | Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets. [[NeurIPS 2020]](https://arxiv.org/abs/2010.14819) | [./tinynet_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tinynet_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/tinynet) | | TNT | Transformer in Transformer. [[NeurIPS 2021]](https://arxiv.org/abs/2103.00112) | [./tnt_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tnt_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/TNT) | | PyramidTNT | PyramidTNT: Improved Transformer-in-Transformer Baselines with Pyramid Architecture. [[CVPR 2022 Workshop]](https://arxiv.org/abs/2201.00978)| [./tnt_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/tnt_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/TNT) | | CMT | CMT: Convolutional Neural Networks Meet Vision Transformers. [[CVPR 2022]](https://arxiv.org/pdf/2107.06263.pdf) | [./cmt_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/cmt_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/CMT) | | AugViT | Augmented Shortcuts for Vision Transformers. [[NeurIPS 2021]](https://proceedings.neurips.cc/paper/2021/file/818f4654ed39a1c147d1e51a00ffb4cb-Paper.pdf) | [./augvit_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/augvit_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/augvit) | | SNN-MLP | Brain-inspired Multilayer Perceptron with Spiking Neurons. [[CVPR 2022]](https://arxiv.org/pdf/2203.14679.pdf) | [./snnmlp_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/snnmlp_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/snn_mlp) | | WaveMLP | An Image Patch is a Wave: Quantum Inspired Vision MLP. [[CVPR 2022]](https://arxiv.org/pdf/2111.12294.pdf) | [./wavemlp_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/wavemlp_pytorch) | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/wave_mlp) | | ViG | Vision GNN: An Image is Worth Graph of Nodes. [[NeurIPS 2022]](https://arxiv.org/abs/2206.00272) | [./vig_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/vig_pytorch) | - | [MindSpore Model Zoo](https://gitee.com/mindspore/models/tree/master/research/cv/ViG) | | LegoNet | LegoNet: Efficient Convolutional Neural Networks with Lego Filters. [[ICML 2019]](http://proceedings.mlr.press/v97/yang19c/yang19c.pdf) | [./legonet_pytorch](https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/legonet_pytorch) | - | | Versatile Filters | Learning Versatile Filters for Efficient Convolutional Neural Networks. [[NeurIPS 2018]](https://papers.nips.cc/paper/7433-learning-versatile-filters-for-efficient-convolutional-neural-networks) | [./versatile_filters](https://github.com/huawei-noah/CV-backbones/tree/master/versatile_filters) | - | ## Citation ``` @inproceedings{ghostnet, title={GhostNet: More Features from Cheap Operations}, author={Han, Kai and Wang, Yunhe and Tian, Qi and Guo, Jianyuan and Xu, Chunjing and Xu, Chang}, booktitle={CVPR}, year={2020} } @inproceedings{tinynet, title={Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets}, author={Han, Kai and Wang, Yunhe and Zhang, Qiulin and Zhang, Wei and Xu, Chunjing and Zhang, Tong}, booktitle={NeurIPS}, year={2020} } @inproceedings{tnt, title={Transformer in transformer}, author={Han, Kai and Xiao, An and Wu, Enhua and Guo, Jianyuan and Xu, Chunjing and Wang, Yunhe}, booktitle={NeurIPS}, year={2021} } @inproceedings{legonet, title={LegoNet: Efficient Convolutional Neural Networks with Lego Filters}, author={Yang, Zhaohui and Wang, Yunhe and Liu, Chuanjian and Chen, Hanting and Xu, Chunjing and Shi, Boxin and Xu, Chao and Xu, Chang}, booktitle={ICML}, year={2019} } @inproceedings{wang2018learning, title={Learning versatile filters for efficient convolutional neural networks}, author={Wang, Yunhe and Xu, Chang and Chunjing, XU and Xu, Chao and Tao, Dacheng}, booktitle={NeurIPS}, year={2018} } @inproceedings{tang2021augmented, title={Augmented shortcuts for vision transformers}, author={Tang, Yehui and Han, Kai and Xu, Chang and Xiao, An and Deng, Yiping and Xu, Chao and Wang, Yunhe}, booktitle={NeurIPS}, year={2021} } @inproceedings{tang2022image, title={An Image Patch is a Wave: Phase-Aware Vision MLP}, author={Tang, Yehui and Han, Kai and Guo, Jianyuan and Xu, Chang and Li, Yanxi and Xu, Chao and Wang, Yunhe}, booktitle={CVPR}, year={2022} } @inproceedings{han2022vig, title={Vision GNN: An Image is Worth Graph of Nodes}, author={Kai Han and Yunhe Wang and Jianyuan Guo and Yehui Tang and Enhua Wu}, booktitle={NeurIPS}, year={2022} } @article{tang2022ghostnetv2, title={GhostNetV2: Enhance Cheap Operation with Long-Range Attention}, author={Tang, Yehui and Han, Kai and Guo, Jianyuan and Xu, Chang and Xu, Chao and Wang, Yunhe}, journal={arXiv preprint arXiv:2211.12905}, year={2022} } ``` ## Other versions of GhostNet This repo provides the TensorFlow/PyTorch code of GhostNet. Other versions and applications can be found in the following: 0. timm: [code with pretrained model](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/ghostnet.py) 1. Darknet: [cfg file](https://github.com/AlexeyAB/darknet/files/3997987/ghostnet.cfg.txt), and [description](https://github.com/AlexeyAB/darknet/issues/4418) 2. Gluon/Keras/Chainer: [code](https://github.com/osmr/imgclsmob) 3. Paddle: [code](https://github.com/PaddlePaddle/PaddleClas/blob/master/ppcls/modeling/architectures/ghostnet.py) 4. Bolt inference framework: [benckmark](https://github.com/huawei-noah/bolt/blob/master/docs/BENCHMARK.md) 5. Human pose estimation: [code](https://github.com/tensorboy/centerpose/blob/master/lib/models/backbones/ghost_net.py) 6. YOLO with GhostNet backbone: [code](https://github.com/HaloTrouvaille/YOLO-Multi-Backbones-Attention) 7. Face recognition: [cavaface](https://github.com/cavalleria/cavaface.pytorch/blob/master/backbone/ghostnet.py), [FaceX-Zoo](https://github.com/JDAI-CV/FaceX-Zoo), [TFace](https://github.com/Tencent/TFace)