# models **Repository Path**: zhouyifengCode/models ## Basic Information - **Project Name**: models - **Description**: Models of MindSpore - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1452 - **Created**: 2021-09-30 - **Last Updated**: 2022-10-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ![MindSpore Logo](https://gitee.com/mindspore/mindspore/raw/master/docs/MindSpore-logo.png) ## 欢迎来到MindSpore ModelZoo 为了让开发者更好地体验MindSpore框架优势,我们将陆续增加更多的典型网络和相关预训练模型。如果您对ModelZoo有任何需求,请通过[Gitee](https://gitee.com/mindspore/mindspore/issues)或[MindSpore](https://bbs.huaweicloud.com/forum/forum-1076-1.html)与我们联系,我们将及时处理。 - 使用最新MindSpore API的SOTA模型 - MindSpore优势 - 官方维护和支持 ## 目录 ### 标准网络 | 领域 | 子领域 | 网络 | Ascend | GPU | CPU | |:---- |:------- |:---- |:----: |:----: |:----: | | 音频(Audio) | 音频合成(Speech Synthesis) | [LPCNet](https://gitee.com/mindspore/models/tree/master/official/audio/lpcnet) | ✅ | | | | 音频(Audio) | 音频合成(Speech Synthesis) | [MelGAN](https://gitee.com/mindspore/models/tree/master/official/audio/melgan) | ✅ | | | | 音频(Audio) | 音频合成(Speech Synthesis) | [Tacotron2](https://gitee.com/mindspore/models/tree/master/official/audio/tacotron2) | ✅ | | | | 计算机视觉(CV) | 点云模型(Point Cloud Model) | [OctSqueeze](https://gitee.com/mindspore/models/tree/master/official/cv/octsqueeze) | ✅ | | | | 计算机视觉(CV) | 光流估计(Optical Flow Estimation) | [PWCNet](https://gitee.com/mindspore/models/tree/master/official/cv/pwcnet) | ✅ | | | | 计算机视觉(CV) | 目标跟踪(Object Tracking) | [Deepsort](https://gitee.com/mindspore/models/tree/master/official/cv/Deepsort) | ✅ | | | | 计算机视觉(CV) | 目标跟踪(Object Tracking) | [ADNet](https://gitee.com/mindspore/models/tree/master/official/cv/ADNet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/models/tree/master/official/cv/alexnet) | ✅ | ✅ | | | 计算机视觉(CV) | 图像分类(Image Classification) | [CNN](https://gitee.com/mindspore/models/tree/master/official/cv/cnn_direction_model) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [DenseNet100](https://gitee.com/mindspore/models/tree/master/official/cv/densenet) | | | ✅ | | 计算机视觉(CV) | 图像分类(Image Classification) | [DenseNet121](https://gitee.com/mindspore/models/tree/master/official/cv/densenet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [DPN](https://gitee.com/mindspore/models/tree/master/official/cv/dpn) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [EfficientNet-B0](https://gitee.com/mindspore/models/tree/master/official/cv/efficientnet) | | ✅ | | | 计算机视觉(CV) | 图像分类(Image Classification) | [GoogLeNet](https://gitee.com/mindspore/models/tree/master/official/cv/googlenet) | ✅ | ✅ | | | 计算机视觉(CV) | 图像分类(Image Classification) | [InceptionV3](https://gitee.com/mindspore/models/tree/master/official/cv/inceptionv3) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [InceptionV4](https://gitee.com/mindspore/models/tree/master/official/cv/inceptionv4) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/models/tree/master/official/cv/lenet) | ✅ | ✅ | ✅ | | 计算机视觉(CV) | 图像分类(Image Classification) | [MobileNetV1](https://gitee.com/mindspore/models/tree/master/official/cv/mobilenetv1) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [MobileNetV2](https://gitee.com/mindspore/models/tree/master/official/cv/mobilenetv2) | ✅ | ✅ | ✅ | | 计算机视觉(CV) | 图像分类(Image Classification) | [MobileNetV3](https://gitee.com/mindspore/models/tree/master/official/cv/mobilenetv3) | | ✅ | | | 计算机视觉(CV) | 图像分类(Image Classification) | [NASNet](https://gitee.com/mindspore/models/tree/master/official/cv/nasnet) | ✅ | ✅ | | | 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-18](https://gitee.com/mindspore/models/tree/master/official/cv/resnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-34](https://gitee.com/mindspore/models/tree/master/official/cv/resnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/models/tree/master/official/cv/resnet) | ✅ | ✅ | ✅ | |计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/models/tree/master/official/cv/resnet) | ✅ | ✅ | | |计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-152](https://gitee.com/mindspore/models/tree/master/official/cv/resnet) | ✅ | | | |计算机视觉(CV) | 图像分类(Image Classification) | [ResNeXt50](https://gitee.com/mindspore/models/tree/master/official/cv/resnext) | ✅ | ✅ | | |计算机视觉(CV) | 图像分类(Image Classification) | [ResNeXt101](https://gitee.com/mindspore/models/tree/master/official/cv/resnext) | ✅ | | | |计算机视觉(CV) | 图像分类(Image Classification) | [SE-ResNet50](https://gitee.com/mindspore/models/tree/master/official/cv/resnet) | ✅ | | | |计算机视觉(CV) | 图像分类(Image Classification) | [SE-ResNext50](https://gitee.com/mindspore/models/tree/master/official/cv/se_resnext50) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [ShuffleNetV1](https://gitee.com/mindspore/models/tree/master/official/cv/shufflenetv1) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [ShuffleNetV2](https://gitee.com/mindspore/models/tree/master/official/cv/shufflenetv2) | | ✅ | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SqueezeNet](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [Tiny-DarkNet](https://gitee.com/mindspore/models/tree/master/official/cv/tinydarknet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/models/tree/master/official/cv/vgg16) | ✅ | ✅ | | | 计算机视觉(CV) | 图像分类(Image Classification) | [Xception](https://gitee.com/mindspore/models/tree/master/official/cv/xception) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [CspDarkNet53](https://gitee.com/mindspore/models/tree/master/official/cv/cspdarknet53) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [ErfNet](https://gitee.com/mindspore/models/tree/master/official/cv/erfnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [SimCLR](https://gitee.com/mindspore/models/tree/master/official/cv/simclr) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) | [Vit](https://gitee.com/mindspore/models/tree/master/official/cv/vit) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [CenterFace](https://gitee.com/mindspore/models/tree/master/official/cv/centerface) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [CTPN](https://gitee.com/mindspore/models/tree/master/official/cv/ctpn) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [Faster R-CNN](https://gitee.com/mindspore/models/tree/master/official/cv/faster_rcnn) | ✅ | ✅ | | | 计算机视觉(CV) | 目标检测(Object Detection) | [Mask R-CNN](https://gitee.com/mindspore/models/tree/master/official/cv/maskrcnn) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) |[Mask R-CNN (MobileNetV1)](https://gitee.com/mindspore/models/tree/master/official/cv/maskrcnn_mobilenetv1) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [SSD](https://gitee.com/mindspore/models/tree/master/official/cv/ssd) | ✅ | ✅ | ✅ | | 计算机视觉(CV) | 目标检测(Object Detection) | [SSD-MobileNetV1-FPN](https://gitee.com/mindspore/models/tree/master/official/cv/ssd) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [SSD-Resnet50-FPN](https://gitee.com/mindspore/models/tree/master/official/cv/ssd) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [SSD-VGG16](https://gitee.com/mindspore/models/tree/master/official/cv/ssd) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [WarpCTC](https://gitee.com/mindspore/models/tree/master/official/cv/warpctc) | ✅ | ✅ | | | 计算机视觉(CV) | 目标检测(Object Detection) | [YOLOv3-ResNet18](https://gitee.com/mindspore/models/tree/master/official/cv/yolov3_resnet18) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [YOLOv3-DarkNet53](https://gitee.com/mindspore/models/tree/master/official/cv/yolov3_darknet53) | ✅ | ✅ | | | 计算机视觉(CV) | 目标检测(Object Detection) |[YOLOv4](https://gitee.com/mindspore/models/tree/master/official/cv/yolov4) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) |[YOLOv5](https://gitee.com/mindspore/models/tree/master/official/cv/yolov5) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) |[RetinaNet](https://gitee.com/mindspore/models/tree/master/official/cv/retinanet) | ✅ | | | | 计算机视觉(CV) | 文本检测(Text Detection) | [DeepText](https://gitee.com/mindspore/models/tree/master/official/cv/deeptext) | ✅ | | | | 计算机视觉(CV) | 文本检测(Text Detection) | [PSENet](https://gitee.com/mindspore/models/tree/master/official/cv/psenet) | ✅ | | | | 计算机视觉(CV) | 文本识别(Text Recognition) | [CNN+CTC](https://gitee.com/mindspore/models/tree/master/official/cv/cnnctc) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeepLabV3](https://gitee.com/mindspore/models/tree/master/official/cv/deeplabv3) | ✅ | | ✅ | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeepLabV3+](https://gitee.com/mindspore/models/tree/master/official/cv/deeplabv3plus) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [U-Net2D (Medical)](https://gitee.com/mindspore/models/tree/master/official/cv/unet) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [U-Net3D (Medical)](https://gitee.com/mindspore/models/tree/master/official/cv/unet3d) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [U-Net++](https://gitee.com/mindspore/models/tree/master/official/cv/unet) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [Fast-SCNN](https://gitee.com/mindspore/models/tree/master/official/cv/fastscnn) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [FCN8s](https://gitee.com/mindspore/models/tree/master/official/cv/FCN8s) | ✅ | | | | 计算机视觉(CV) | 姿态检测(6DoF Pose Estimation) | [PVNet](https://gitee.com/mindspore/models/tree/master/official/cv/pvnet) | ✅ | | | | 计算机视觉(CV) | 关键点检测(Keypoint Detection) |[OpenPose](https://gitee.com/mindspore/models/tree/master/official/cv/openpose) | ✅ | | | | 计算机视觉(CV) | 关键点检测(Keypoint Detection) |[SimplePoseNet](https://gitee.com/mindspore/models/tree/master/official/cv/simple_pose) | ✅ | | | | 计算机视觉(CV) | 文本检测(Scene Text Detection) | [East](https://gitee.com/mindspore/models/tree/master/official/cv/east) | ✅ | | | | 计算机视觉(CV) | 文本检测(Scene Text Detection) | [PSENet](https://gitee.com/mindspore/models/tree/master/official/cv/psenet) | ✅ | | | | 计算机视觉(CV) | 文本识别(Scene Text Recognition) |[CRNN](https://gitee.com/mindspore/models/tree/master/official/cv/crnn) | ✅ | | | | 计算机视觉(CV) | 文本识别(Scene Text Recognition) |[CNN+CTC](https://gitee.com/mindspore/models/tree/master/official/cv/cnnctc) | ✅ | | | | 计算机视觉(CV) | 文本识别(Scene Text Recognition) |[CRNN-Seq2Seq-OCR](https://gitee.com/mindspore/models/tree/master/official/cv/crnn_seq2seq_ocr) | ✅ | | | | 计算机视觉(CV) | 文本识别(Scene Text Recognition) |[WarpCTC](https://gitee.com/mindspore/models/tree/master/official/cv/warpctc) | ✅ | | | | 计算机视觉(CV) | 缺陷检测(Defect Detection) |[PatchCore](https://gitee.com/mindspore/models/tree/master/official/cv/patchcore) | ✅ | | | | 计算机视觉(CV) | 缺陷检测(Defect Detection) |[ssim-ae](https://gitee.com/mindspore/models/tree/master/official/cv/ssim-ae) | ✅ | | | | 计算机视觉(CV) | 人脸检测(Face Detection) | [RetinaFace-ResNet50](https://gitee.com/mindspore/models/tree/master/official/cv/retinaface_resnet50) | ✅ | ✅ | | | 计算机视觉(CV) | 人脸检测(Face Detection) | [CenterFace](https://gitee.com/mindspore/models/tree/master/official/cv/centerface) | ✅ | | | | 计算机视觉(CV) | 人脸检测(Face Detection) | [SphereFace](https://gitee.com/mindspore/models/tree/master/official/cv/sphereface) | ✅ | | | | 计算机视觉(CV) | 人群计数(Crowd Counting) | [MCNN](https://gitee.com/mindspore/models/tree/master/official/cv/MCNN) | ✅ | | | | 计算机视觉(CV) | 深度估计(Depth Estimation) | [DepthNet](https://gitee.com/mindspore/models/tree/master/official/cv/depthnet) | ✅ | | | | 计算机视觉(CV) | 相机重定位(Camera Relocalization) | [PoseNet](https://gitee.com/mindspore/models/tree/master/official/cv/posenet) | ✅ | | | | 计算机视觉(CV) | 图像抠图(Image Matting) | [Semantic Human Matting](https://gitee.com/mindspore/models/tree/master/official/cv/semantic_human_matting) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [C3D](https://gitee.com/mindspore/models/tree/master/official/cv/c3d) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[RDN](https://gitee.com/mindspore/models/tree/master/official/cv/RDN) | ✅ | ✅ | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) | [SRCNN](https://gitee.com/mindspore/models/tree/master/official/cv/srcnn) | ✅ | | | | 计算机视觉(CV) | 图像去噪(Image Denoising) | [BRDNet](https://gitee.com/mindspore/models/tree/master/official/cv/brdnet) | ✅ | | | | 计算机视觉(CV) | 图像去噪(Image Denoising) | [DnCNN](https://gitee.com/mindspore/models/tree/master/official/cv/dncnn) | ✅ | | | | 计算机视觉(CV) | 图像去噪(Image Denoising) | [Learning-to-See-in-the-Dark](https://gitee.com/mindspore/models/tree/master/official/cv/LearningToSeeInTheDark) | ✅ | | | | 计算机视觉(CV) | 图像质量评估(Image Quality Assessment) | [NIMA](https://gitee.com/mindspore/models/tree/master/official/cv/nima) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/models/tree/master/official/nlp/bert) | ✅ | ✅ | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [FastText](https://gitee.com/mindspore/models/tree/master/official/nlp/fasttext) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [GNMT v2](https://gitee.com/mindspore/models/tree/master/official/nlp/gnmt_v2) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [GRU](https://gitee.com/mindspore/models/tree/master/official/nlp/gru) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [MASS](https://gitee.com/mindspore/models/tree/master/official/nlp/mass) | ✅ | ✅ | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/models/tree/master/official/nlp/lstm) | ✅ | ✅ | ✅ | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/models/tree/master/official/nlp/transformer) | ✅ | ✅ | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TinyBERT](https://gitee.com/mindspore/models/tree/master/official/nlp/tinybert) | ✅ | ✅ | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TextCNN](https://gitee.com/mindspore/models/tree/master/official/nlp/textcnn) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [CPM](https://gitee.com/mindspore/models/tree/master/official/nlp/cpm) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [ERNIE](https://gitee.com/mindspore/models/tree/master/official/nlp/ernie) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [GPT-3](https://gitee.com/mindspore/models/tree/master/official/nlp/gpt) | ✅ | | | | 自然语言处理(NLP) | 情感分析(Emotion Classification) | [EmoTect](https://gitee.com/mindspore/models/tree/master/official/nlp/emotect) | ✅ | | | | 自然语言处理(NLP) | 情感分析(Emotion Classification) | [LSTM](https://gitee.com/mindspore/models/tree/master/official/nlp/lstm) | ✅ | | | | 自然语言处理(NLP) | 对话系统(Dialogue Generation) | [DGU](https://gitee.com/mindspore/models/tree/master/official/nlp/dgu) | ✅ | | | | 自然语言处理(NLP) | 对话系统(Dialogue Generation) | [DuConv](https://gitee.com/mindspore/models/tree/master/official/nlp/duconv) | ✅ | | | | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/models/tree/master/official/recommend/deepfm) | ✅ | ✅ | ✅ | | 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search, Ranking) | [Wide&Deep](https://gitee.com/mindspore/models/tree/master/official/recommend/wide_and_deep) | ✅ | ✅ | | | 推荐(Recommender) | 推荐系统(Recommender System) | [NAML](https://gitee.com/mindspore/models/tree/master/official/recommend/naml) | ✅ | | | | 推荐(Recommender) | 推荐系统(Recommender System) | [NCF](https://gitee.com/mindspore/models/tree/master/official/recommend/ncf) | ✅ | | | | 图神经网络(GNN) | 文本分类(Text Classification) | [GCN](https://gitee.com/mindspore/models/tree/master/official/gnn/gcn) | ✅ | | | | 图神经网络(GNN) | 文本分类(Text Classification) | [GAT](https://gitee.com/mindspore/models/tree/master/official/gnn/gat) | ✅ | | | | 图神经网络(GNN) | 推荐系统(Recommender System) | [BGCF](https://gitee.com/mindspore/models/tree/master/official/gnn/bgcf) | ✅ | | | ### 研究网络 | 领域 | 子领域 | 网络 | Ascend | GPU | CPU | |:---- |:------- |:---- |:----: |:----: |:----: | | 计算机视觉(CV) | 图像分类(Image Classification) |[3D Densenet](https://gitee.com/mindspore/models/tree/master/research/cv/3D_DenseNet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Auto Augment](https://gitee.com/mindspore/models/tree/master/research/cv/autoaugment) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[AVA](https://gitee.com/mindspore/models/tree/master/research/cv/AVA_cifar) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[CCT](https://gitee.com/mindspore/models/tree/master/research/cv/cct) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[dnet-nas](https://gitee.com/mindspore/models/tree/master/research/cv/dnet_nas) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Efficientnet-b0](https://gitee.com/mindspore/models/tree/master/research/cv/efficientnet-b0) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Efficientnet-b1](https://gitee.com/mindspore/models/tree/master/research/cv/efficientnet-b1) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Efficientnet-b2](https://gitee.com/mindspore/models/tree/master/research/cv/efficientnet-b2) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Efficientnet-b3](https://gitee.com/mindspore/models/tree/master/research/cv/efficientnet-b3) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[FDA-BNN](https://gitee.com/mindspore/models/tree/master/research/cv/FDA-BNN) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[fishnet99](https://gitee.com/mindspore/models/tree/master/research/cv/fishnet99) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[GENET](https://gitee.com/mindspore/models/tree/master/research/cv/GENet_Res50) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[GhostNet](https://gitee.com/mindspore/models/tree/master/research/cv/ghostnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Glore_res200](https://gitee.com/mindspore/models/tree/master/research/cv/glore_res200) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Glore_res50](https://gitee.com/mindspore/models/tree/master/research/cv/glore_res50) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[HarDNet](https://gitee.com/mindspore/models/tree/master/research/cv/hardnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[HourNAS](https://gitee.com/mindspore/models/tree/master/research/cv/HourNAS) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[HRNetW48-cls](https://gitee.com/mindspore/models/tree/master/research/cv/HRNetW48_cls) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ibn-net](https://gitee.com/mindspore/models/tree/master/research/cv/ibnnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Inception ResNet V2](https://gitee.com/mindspore/models/tree/master/research/cv/inception_resnet_v2) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Resnetv2_50_frn](https://gitee.com/mindspore/models/tree/master/research/cv/resnetv2_50_frn) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[META-Baseline](https://gitee.com/mindspore/models/tree/master/research/cv/meta-baseline) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[MNasNet](https://gitee.com/mindspore/models/tree/master/research/cv/mnasnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[MobilenetV3-Large](https://gitee.com/mindspore/models/tree/master/research/cv/mobilenetv3_large) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[MobilenetV3-Small](https://gitee.com/mindspore/models/tree/master/research/cv/mobilenetV3_small_x1_0) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[NFNet-F0](https://gitee.com/mindspore/models/tree/master/research/cv/NFNet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ntsnet](https://gitee.com/mindspore/models/tree/master/research/cv/ntsnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Pdarts](https://gitee.com/mindspore/models/tree/master/research/cv/PDarts) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[PNASNet-5](https://gitee.com/mindspore/models/tree/master/research/cv/pnasnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ProtoNet](https://gitee.com/mindspore/models/tree/master/research/cv/ProtoNet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Proxylessnas](https://gitee.com/mindspore/models/tree/master/research/cv/proxylessnas) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[RelationNet](https://gitee.com/mindspore/models/tree/master/research/cv/relationnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[renas](https://gitee.com/mindspore/models/tree/master/research/cv/renas) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Res2net](https://gitee.com/mindspore/models/tree/master/research/cv/res2net) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ResNeSt-50](https://gitee.com/mindspore/models/tree/master/research/cv/ResNeSt50) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ResNet50-BAM](https://gitee.com/mindspore/models/tree/master/research/cv/resnet50_bam) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ResNet50-quadruplet](https://gitee.com/mindspore/models/tree/master/research/cv/metric_learn) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ResNet50-triplet](https://gitee.com/mindspore/models/tree/master/research/cv/metric_learn) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ResNetV2](https://gitee.com/mindspore/models/tree/master/research/cv/metric_learn) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[ResNeXt152_vd_64x4d](https://gitee.com/mindspore/models/tree/master/research/cv/resnext152_64x4d) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SE-Net](https://gitee.com/mindspore/models/tree/master/research/cv/SE-Net) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SERes2Net50](https://gitee.com/mindspore/models/tree/master/research/cv/res2net) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SinglePathNas](https://gitee.com/mindspore/models/tree/master/research/cv/single_path_nas) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SKNet-50](https://gitee.com/mindspore/models/tree/master/research/cv/sknet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SPPNet](https://gitee.com/mindspore/models/tree/master/research/cv/SPPNet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SqueezeNet](https://gitee.com/mindspore/models/tree/master/research/cv/squeezenet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[SqueezeNet1_1](https://gitee.com/mindspore/models/tree/master/research/cv/squeezenet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Swin Transformer](https://gitee.com/mindspore/models/tree/master/research/cv/swin_transformer) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[TNT](https://gitee.com/mindspore/models/tree/master/research/cv/TNT) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[VGG19](https://gitee.com/mindspore/models/tree/master/research/cv/vgg19) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Vit-Base](https://gitee.com/mindspore/models/tree/master/research/cv/vit_base) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[Wide ResNet](https://gitee.com/mindspore/models/tree/master/research/cv/wideresnet) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[FaceAttributes](https://gitee.com/mindspore/models/tree/master/research/cv/FaceAttribute) | ✅ | | | | 计算机视觉(CV) | 图像分类(Image Classification) |[FaceQualityAssessment](https://gitee.com/mindspore/models/tree/master/research/cv/FaceQualityAssessment) | ✅ | | | | 计算机视觉(CV) | 重识别(Re-Identification) |[Aligned-ReID](https://gitee.com/mindspore/models/tree/master/research/cv/AlignedReID) | ✅ | | | | 计算机视觉(CV) | 重识别(Re-Identification) |[DDAG](https://gitee.com/mindspore/models/tree/master/research/cv/DDAG) | ✅ | | | | 计算机视觉(CV) | 重识别(Re-Identification) |[MVD](https://gitee.com/mindspore/models/tree/master/research/cv/MVD) | ✅ | | | | 计算机视觉(CV) | 重识别(Re-Identification) |[OSNet](https://gitee.com/mindspore/models/tree/master/research/cv/osnet) | ✅ | | | | 计算机视觉(CV) | 重识别(Re-Identification) |[PAMTRI](https://gitee.com/mindspore/models/tree/master/research/cv/PAMTRI) | ✅ | | | | 计算机视觉(CV) | 重识别(Re-Identification) |[VehicleNet](https://gitee.com/mindspore/models/tree/master/research/cv/VehicleNet) | ✅ | | | | 计算机视觉(CV) | 人脸检测(Face Detection) | [FaceDetection](https://gitee.com/mindspore/models/tree/master/research/cv/FaceDetection) | ✅ | | | | 计算机视觉(CV) | 人脸检测(Face Detection) | [FaceBoxes](https://gitee.com/mindspore/models/tree/master/research/cv/faceboxes) | ✅ | | | | 计算机视觉(CV) | 人脸检测(Face Detection) | [RetinaFace](https://gitee.com/mindspore/models/tree/master/research/cv/retinaface) | ✅ | | | | 计算机视觉(CV) | 人脸识别(Face Recognition) | [Arcface](https://gitee.com/mindspore/models/tree/master/research/cv/arcface) | ✅ | | | | 计算机视觉(CV) | 人脸识别(Face Recognition) | [DeepID](https://gitee.com/mindspore/models/tree/master/research/cv/DeepID) | ✅ | | | | 计算机视觉(CV) | 人脸识别(Face Recognition) |[FaceRecognition](https://gitee.com/mindspore/models/tree/master/research/cv/FaceRecognition) | ✅ | | | | 计算机视觉(CV) | 人脸识别(Face Recognition) |[FaceRecognitionForTracking](https://gitee.com/mindspore/models/tree/master/research/cv/FaceRecognitionForTracking) | ✅ | | | | 计算机视觉(CV) | 人脸识别(Face Recognition) | [LightCNN](https://gitee.com/mindspore/models/tree/master/research/cv/LightCNN) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [Spnas](https://gitee.com/mindspore/models/tree/master/research/cv/Spnas) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [SSD-GhostNet](https://gitee.com/mindspore/models/tree/master/research/cv/ssd_ghostnet) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [EGNet](https://gitee.com/mindspore/models/tree/master/research/cv/EGnet) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [FasterRCNN-FPN-DCN](https://gitee.com/mindspore/models/tree/master/research/cv/faster_rcnn_dcn) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [NAS-FPN](https://gitee.com/mindspore/models/tree/master/research/cv/nas-fpn) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [RAS](https://gitee.com/mindspore/models/tree/master/research/cv/ras) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [r-cnn](https://gitee.com/mindspore/models/tree/master/research/cv/rcnn) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [RefineDet](https://gitee.com/mindspore/models/tree/master/research/cv/RefineDet) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [Res2net_fasterrcnn](https://gitee.com/mindspore/models/tree/master/research/cv/res2net_faster_rcnn) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [Res2net_yolov3](https://gitee.com/mindspore/models/tree/master/research/cv/res2net_yolov3) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [Retinanet_resnet101](https://gitee.com/mindspore/models/tree/master/research/cv/retinanet_resnet101) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [SSD_MobilenetV2_fpnlite](https://gitee.com/mindspore/models/tree/master/research/cv/ssd_mobilenetV2_FPNlite) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [ssd_mobilenet_v2](https://gitee.com/mindspore/models/tree/master/research/cv/ssd_mobilenetV2) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [ssd_resnet50](https://gitee.com/mindspore/models/tree/master/research/cv/ssd_resnet50) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [ssd_inceptionv2](https://gitee.com/mindspore/models/tree/master/research/cv/ssd_inception_v2) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [ssd_resnet34](https://gitee.com/mindspore/models/tree/master/research/cv/ssd_resnet34) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [U-2-Net](https://gitee.com/mindspore/models/tree/master/research/cv/u2net) | ✅ | | | | 计算机视觉(CV) | 目标检测(Object Detection) | [YOLOV3-tiny](https://gitee.com/mindspore/models/tree/master/research/cv/yolov3_tiny) | ✅ | | | | 计算机视觉(CV) | 目标跟踪(Object Tracking) |[SiamFC](https://gitee.com/mindspore/models/tree/master/research/cv/SiamFC) | ✅ | | | | 计算机视觉(CV) | 目标跟踪(Object Tracking) |[SiamRPN](https://gitee.com/mindspore/models/tree/master/research/cv/siamRPN) | ✅ | | | | 计算机视觉(CV) | 目标跟踪(Object Tracking) |[FairMOT](https://gitee.com/mindspore/models/tree/master/research/cv/fairmot) | ✅ | | | | 计算机视觉(CV) | 关键点检测(Key Point Detection) | [CenterNet](https://gitee.com/mindspore/models/tree/master/research/cv/centernet) | ✅ | | ✅ | | 计算机视觉(CV) | 关键点检测(Key Point Detection) | [CenterNet-hourglass](https://gitee.com/mindspore/models/tree/master/research/cv/centernet_det) | ✅ | | | | 计算机视觉(CV) | 关键点检测(Key Point Detection) | [CenterNet-resnet101](https://gitee.com/mindspore/models/tree/master/research/cv/centernet_resnet101) | ✅ | | | | 计算机视觉(CV) | 关键点检测(Key Point Detection) | [CenterNet-resnet50](https://gitee.com/mindspore/models/tree/master/research/cv/centernet_resnet50_v1) | ✅ | | | | 计算机视觉(CV) | 点云模型(Point Cloud Model) |[PointNet](https://gitee.com/mindspore/models/tree/master/research/cv/pointnet) | ✅ | | | | 计算机视觉(CV) | 点云模型(Point Cloud Model) |[PointNet++](https://gitee.com/mindspore/models/tree/master/research/cv/pointnet2) | ✅ | | | | 计算机视觉(CV) | 点云模型(Point Cloud Model) |[PointNet++](https://gitee.com/mindspore/models/tree/master/research/cv/pointnet2) | ✅ | | | | 计算机视觉(CV) | 深度估计(Depth Estimation) | [midas](https://gitee.com/mindspore/models/tree/master/research/cv/midas) | ✅ | | | | 计算机视觉(CV) | 序列图片分类(Sequential Image Classification) | [TCN](https://gitee.com/mindspore/models/tree/master/research/cv/TCN) | ✅ | | | | 计算机视觉(CV) | 时空定位(Temporal Localization) | [TALL](https://gitee.com/mindspore/models/tree/master/research/cv/tall) | ✅ | | | | 计算机视觉(CV) | 图像抠图(Image Matting) | [FCA-net](https://gitee.com/mindspore/models/tree/master/research/cv/FCANet) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [Attention Cluster](https://gitee.com/mindspore/models/tree/master/research/cv/AttentionCluster) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [ECO-lite](https://gitee.com/mindspore/models/tree/master/research/cv/ecolite) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [R(2+1)D](https://gitee.com/mindspore/models/tree/master/research/cv/r2plus1d) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [Resnet-3D](https://gitee.com/mindspore/models/tree/master/research/cv/resnet3d) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [StNet](https://gitee.com/mindspore/models/tree/master/research/cv/stnet) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [TSM](https://gitee.com/mindspore/models/tree/master/research/cv/tsm) | ✅ | | | | 计算机视觉(CV) | 视频分类(Video Classification) | [TSN](https://gitee.com/mindspore/models/tree/master/research/cv/tsn) | ✅ | | | | 计算机视觉(CV) | Zero-Shot Learnning | [DEM](https://gitee.com/mindspore/models/tree/master/research/cv/dem) | ✅ | | | | 计算机视觉(CV) | 风格迁移(Style Transfer) |[AECRNET](https://gitee.com/mindspore/models/tree/master/research/cv/aecrnet) | ✅ | | | | 计算机视觉(CV) | 风格迁移(Style Transfer) |[APDrawingGAN](https://gitee.com/mindspore/models/tree/master/research/cv/APDrawingGAN) | ✅ | | | | 计算机视觉(CV) | 风格迁移(Style Transfer) |[Arbitrary-image-stylization](https://gitee.com/mindspore/models/tree/master/research/cv/ArbitraryStyleTransfer) | ✅ | | | | 计算机视觉(CV) | 风格迁移(Style Transfer) |[AttGAN](https://gitee.com/mindspore/models/tree/master/research/cv/AttGAN) | ✅ | | | | 计算机视觉(CV) | 风格迁移(Style Transfer) |[CycleGAN](https://gitee.com/mindspore/models/tree/master/research/cv/CycleGAN) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[CSD](https://gitee.com/mindspore/models/tree/master/research/cv/csd) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[DBPN](https://gitee.com/mindspore/models/tree/master/research/cv/DBPN) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[EDSR](https://gitee.com/mindspore/models/tree/master/research/cv/EDSR) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[esr-ea](https://gitee.com/mindspore/models/tree/master/research/cv/esr_ea) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[ESRGAN](https://gitee.com/mindspore/models/tree/master/research/cv/ESRGAN) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[IRN](https://gitee.com/mindspore/models/tree/master/research/cv/IRN) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[RCAN](https://gitee.com/mindspore/models/tree/master/research/cv/RCAN) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[sr-ea](https://gitee.com/mindspore/models/tree/master/research/cv/sr_ea) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[SRGAN](https://gitee.com/mindspore/models/tree/master/research/cv/SRGAN) | ✅ | | | | 计算机视觉(CV) | 图像超分(Image Super-Resolution) |[wdsr](https://gitee.com/mindspore/models/tree/master/research/cv/wdsr) | ✅ | | | | 计算机视觉(CV) | 图像去噪(Image Denoising) |[Neighbor2Neighbor](https://gitee.com/mindspore/models/tree/master/research/cv/Neighbor2Neighbor) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[CGAN](https://gitee.com/mindspore/models/tree/master/research/cv/CGAN) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[DCGAN](https://gitee.com/mindspore/models/tree/master/research/cv/dcgan) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[GAN](https://gitee.com/mindspore/models/tree/master/research/cv/gan) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[IPT](https://gitee.com/mindspore/models/tree/master/research/cv/IPT) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[pgan](https://gitee.com/mindspore/models/tree/master/research/cv/PGAN) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[Photo2Cartoon](https://gitee.com/mindspore/models/tree/master/research/cv/U-GAT-IT) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[Pix2Pix](https://gitee.com/mindspore/models/tree/master/research/cv/Pix2Pix) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[SinGAN](https://gitee.com/mindspore/models/tree/master/research/cv/SinGAN) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[StarGAN](https://gitee.com/mindspore/models/tree/master/research/cv/StarGAN) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[STGAN](https://gitee.com/mindspore/models/tree/master/research/cv/STGAN) | ✅ | | | | 计算机视觉(CV) | 图像生成(Image Generation) |[WGAN](https://gitee.com/mindspore/models/tree/master/research/cv/wgan) | ✅ | | | | 计算机视觉(CV) | 文本检测(Scene Text Detection) | [AdvancedEast](https://gitee.com/mindspore/models/tree/master/research/cv/advanced_east) | ✅ | | | | 计算机视觉(CV) | 文本检测(Scene Text Detection) | [TextFuseNet](https://gitee.com/mindspore/models/tree/master/research/cv/textfusenet) | ✅ | | | | 计算机视觉(CV) | 文本识别(Scene Text Recognition) | [ManiDP](https://gitee.com/mindspore/models/tree/master/research/cv/ManiDP) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [3d-cnn](https://gitee.com/mindspore/models/tree/master/research/cv/3dcnn) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [adelaide_ea](https://gitee.com/mindspore/models/tree/master/research/cv/adelaide_ea) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DDRNet](https://gitee.com/mindspore/models/tree/master/research/cv/DDRNet) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [E-Net](https://gitee.com/mindspore/models/tree/master/research/cv/E-NET) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [Hrnet](https://gitee.com/mindspore/models/tree/master/research/cv/HRNetW48_seg) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [ICNet](https://gitee.com/mindspore/models/tree/master/research/cv/ICNet) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [PSPnet](https://gitee.com/mindspore/models/tree/master/research/cv/PSPNet) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [RefineNet](https://gitee.com/mindspore/models/tree/master/research/cv/RefineNet) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [Res2net_deeplabv3](https://gitee.com/mindspore/models/tree/master/research/cv/res2net_deeplabv3) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [UNet 3+](https://gitee.com/mindspore/models/tree/master/research/cv/UNet3+) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [V-net](https://gitee.com/mindspore/models/tree/master/research/cv/vnet) | ✅ | | | | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [Autodeeplab](https://gitee.com/mindspore/models/tree/master/research/cv/Auto-DeepLab) | ✅ | | | | 计算机视觉(CV) | 姿态估计(Pose Estimation) | [AlphaPose](https://gitee.com/mindspore/models/tree/master/research/cv/AlphaPose) | ✅ | | | | 计算机视觉(CV) | 姿态估计(Pose Estimation) | [Hourglass](https://gitee.com/mindspore/models/tree/master/research/cv/StackedHourglass) | ✅ | | | | 计算机视觉(CV) | 姿态估计(Pose Estimation) | [Simple Baseline](https://gitee.com/mindspore/models/tree/master/research/cv/simple_baselines) | ✅ | | | | 计算机视觉(CV) | 图像检索(Image Retrieval) |[Delf](https://gitee.com/mindspore/models/tree/master/research/cv/delf) | ✅ | | | | 自然语言处理(NLP) | 词嵌入(Word Embedding) | [Word2Vec Skip-Gram](https://gitee.com/mindspore/models/tree/master/research/nlp/skipgram) | ✅ | | | | 自然语言处理(NLP) | 对话系统(Dialogue Generation) | [DAM](https://gitee.com/mindspore/models/tree/master/research/nlp/dam) | ✅ | | | | 自然语言处理(NLP) | 机器翻译(Machine Translation) | [Seq2Seq](https://gitee.com/mindspore/models/tree/master/research/nlp/seq2seq) | ✅ | | | | 自然语言处理(NLP) | 情感分析(Emotion Classification) | [Senta](https://gitee.com/mindspore/models/tree/master/research/nlp/senta) | ✅ | | | | 自然语言处理(NLP) | 情感分析(Emotion Classification) | [Attention LSTM](https://gitee.com/mindspore/models/tree/master/research/nlp/atae_lstm) | ✅ | | | | 自然语言处理(NLP) | 命名实体识别(Named Entity Recognition) | [LSTM_CRF](https://gitee.com/mindspore/models/tree/master/research/nlp/lstm_crf) | ✅ | | | | 自然语言处理(NLP) | 文本分类(Text Classification) | [HyperText](https://gitee.com/mindspore/models/tree/master/research/nlp/hypertext) | ✅ | | | | 自然语言处理(NLP) | 文本分类(Text Classification) | [TextRCNN](https://gitee.com/mindspore/models/tree/master/research/nlp/textrcnn) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [ALBert](https://gitee.com/mindspore/models/tree/master/research/nlp/albert) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [KT-Net](https://gitee.com/mindspore/models/tree/master/research/nlp/ktnet) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [LUKE](https://gitee.com/mindspore/models/tree/master/research/nlp/luke) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TextRCNN](https://gitee.com/mindspore/models/tree/master/research/nlp/textrcnn) | ✅ | | | | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TPRR](https://gitee.com/mindspore/models/tree/master/research/nlp/tprr) | ✅ | | | | 自然语言处理(NLP) | 知识图谱嵌入(Knowledge Graph Embedding) | [RotatE](https://gitee.com/mindspore/models/tree/master/research/nlp/rotate) | ✅ | | | | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [AutoDis](https://gitee.com/mindspore/models/tree/master/research/recommend/autodis) | ✅ | | | | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFFM](https://gitee.com/mindspore/models/tree/master/research/recommend/Fat-DeepFFM) | ✅ | | | | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DIEN](https://gitee.com/mindspore/models/tree/master/research/recommend/DIEN) | ✅ | | | | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DLRM](https://gitee.com/mindspore/models/tree/master/research/recommend/dlrm) | ✅ | | | | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [EDCN](https://gitee.com/mindspore/models/tree/master/research/recommend/EDCN) | ✅ | | | | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [MMOE](https://gitee.com/mindspore/models/tree/master/research/recommend/mmoe) | ✅ | | | |语音(Audio) | 音频标注(Audio Tagging) | [FCN-4](https://gitee.com/mindspore/models/tree/master/research/audio/fcn-4) | ✅ | | | |语音(Audio) | 关键词识别(Keyword Spotting) | [DS-CNN](https://gitee.com/mindspore/models/tree/master/research/audio/dscnn) | ✅ | | | |语音(Audio) | 语音识别(Speech Recognition) | [CTCModel](https://gitee.com/mindspore/models/tree/master/research/audio/ctcmodel) | ✅ | | | |语音(Audio) | 语音合成(Speech Synthesis) | [Wavenet](https://gitee.com/mindspore/models/tree/master/research/audio/wavenet) | ✅ | | | | 图神经网络(GNN) | 交通预测(Traffic Prediction) | [STGCN](https://gitee.com/mindspore/models/tree/master/research/cv/stgcn) | ✅ | | | | 图神经网络(GNN) | 交通预测(Traffic Prediction) | [TGCN](https://gitee.com/mindspore/models/tree/master/research/cv/tgcn) | ✅ | | | | 图神经网络(GNN) | 社交信息网络(Social and Information Networks) | [SGCN](https://gitee.com/mindspore/models/tree/master/research/gnn/sgcn) | ✅ | | | | 图神经网络(GNN) | 图结构数据分类(Graph Classification) | [DGCN](https://gitee.com/mindspore/models/tree/master/research/gnn/dgcn) | ✅ | | | | 图神经网络(GNN) | 图结构数据分类(Graph Classification) | [SDNE](https://gitee.com/mindspore/models/tree/master/research/gnn/sdne) | ✅ | | | |高性能计算(HPC) | 分子动力学(Molecular Dynamics) | [DeepPotentialH2O](https://gitee.com/mindspore/models/tree/master/research/hpc/molecular_dynamics) | ✅ | | | |高性能计算(HPC) | 海洋模型(Ocean Model) | [GOMO](https://gitee.com/mindspore/models/tree/master/research/hpc/ocean_model) | | ✅ | | - [社区](https://gitee.com/mindspore/models/tree/master/community) ## 公告 ### 2021.9.15 `models`独立建仓 `models`仓库由原[mindspore仓库](https://gitee.com/mindspore/mindspore)的model_zoo目录独立分离而来,新仓库不继承历史commit记录,如果需要查找历史提2021.9.15之前的提交,请到mindspore仓库进行查询。 ## 关联站点 这里是MindSpore框架提供的可以运行于包括Ascend/GPU/CPU/移动设备等多种设备的模型库。 相应的专属于Ascend平台的多框架模型可以参考[昇腾ModelZoo](https://hiascend.com/software/modelzoo)以及对应的[代码仓](https://gitee.com/ascend/modelzoo)。 MindSpore相关的预训练模型可以在[MindSpore hub](https://www.mindspore.cn/resources/hub)或[下载中心](https://download.mindspore.cn/model_zoo/). ## 免责声明 MindSpore仅提供下载和预处理公共数据集的脚本。我们不拥有这些数据集,也不对它们的质量负责或维护。请确保您具有在数据集许可下使用该数据集的权限。在这些数据集上训练的模型仅用于非商业研究和教学目的。 致数据集拥有者:如果您不希望将数据集包含在MindSpore中,或者希望以任何方式对其进行更新,我们将根据要求删除或更新所有公共内容。请通过GitHub或Gitee与我们联系。非常感谢您对这个社区的理解和贡献。 MindSpore已获得Apache 2.0许可,请参见LICENSE文件。 ## 许可证 [Apache 2.0许可证](https://gitee.com/mindspore/mindspore/blob/master/LICENSE) ## FAQ 想要获取更多关于`MindSpore`框架使用本身的FAQ问题的,可以参考[官网FAQ](https://www.mindspore.cn/docs/zh-CN/master/faq/installation.html) - **Q: 直接使用models下的模型出现内存不足错误,例如*Failed to alloc memory pool memory*, 该怎么处理?** **A**: 直接使用models下的模型出现内存不足的典型原因是由于运行模式(`PYNATIVE_MODE`)、运行环境配置、License控制(AI-TOKEN)的不同造成的: - `PYNATIVE_MODE`通常比`GRAPH_MODE`使用更多内存,尤其是在需要进行反向传播计算的训练图中,当前有2种方法可以尝试解决该问题。 方法1:你可以尝试使用一些更小的batch size; 方法2:添加context.set_context(mempool_block_size="XXGB"),其中,“XX”当前最大有效值可设置为“31”。 如果将方法1与方法2结合使用,效果会更好。 - 运行环境由于NPU的核数、内存等配置不同也会产生类似问题。 - License控制(AI-TOKEN)的不同档位会造成执行过程中内存开销不同,也可以尝试使用一些更小的batch size。 - **Q: 一些网络运行中报错接口不存在,例如cannot import,该怎么处理?** **A**: 优先检查一下获取网络脚本的分支,与所使用的MindSpore版本是否一致,部分新分支中的模型脚本会使用一些新版本MindSpore才支持的接口,从而在使用老版本MindSpore时会发生报错. - **Q: 一些模型描述中提到的*RANK_TABLE_FILE*文件,是什么?** **A**: *RANK_TABLE_FILE*是一个Ascend环境上用于指定分布式集群信息的文件,更多信息可以参考生成工具[hccl_toos](https://gitee.com/mindspore/models/tree/master/utils/hccl_tools)和[分布式并行训练教程](https://mindspore.cn/docs/programming_guide/zh-CN/r1.5/distributed_training_ascend.html#id4) - **Q: 在windows环境上要怎么运行网络脚本?** **A**: 多数模型都是使用bash作为启动脚本,在Windows环境上无法直接使用bash命令,你可以考虑直接运行python命令而不是bash启动脚本 ,如果你确实想需要使用bash脚本,你可以考虑使用以下几种方法来运行模型: 1. 使用虚拟环境,可以构造一个linux的虚拟机或docker容器,然后在虚拟环境中运行脚本 2. 使用WSL,可以开启Windows的linux子系统来在Windows系统中运行linux,然后再WSL中运行脚本。 3. 使用Windows Bash,需要获取一个可以直接在Windows上运行bash的环境,常见的选择是[cygwin](http://www.cygwin.com)或[git bash](https://gitforwindows.org) 4. 跳过bash脚本,直接调用python程序。 - **Q: 网络在310推理时出现编译失败,报错信息指向gflags,例如*undefined reference to 'google::FlagRegisterer::FlagRegisterer'*,该怎么处理?** **A**: 优先检查一下环境GCC版本和gflags版本是否匹配,可以参考[官方链接](https://www.mindspore.cn/install)安装对应的GCC版本,[gflags](https://github.com/gflags/gflags/archive/v2.2.2.tar.gz)安装gflags。你需要保证所使用的组件之间是ABI兼容的,更多信息可以参考[_GLIBCXX_USE_CXX11_ABI](https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html) - **Q: 在Mac系统上加载mindrecord格式的数据集出错,例如*Invalid file, failed to open files for reading mindrecord files.*,该怎么处理?** **A**: 优先使用*ulimit -a*检查系统限制,如果*file descriptors*数量为256(默认值),需要使用*ulimit -n 1024*将其设置为1024(或者更大的值)。之后再检查文件是否损坏或者被修改。 - **Q: 我在多台服务器构成的大集群上进行训练,但是得到的精度比预期要低,该怎么办?** **A**: 当前模型库中的大部分模型只在单机内进行过验证,最大使用8卡进行训练。由于MindSpore训练时指定的`batch_size`是单卡的,所以当单机8卡升级到多机时,会导致全局的`global_batch_size`变大,这就导致需要针对当前多机场景的`global_batch_size`进行重新调参优化。