# YOLOv3_PyTorch **Repository Path**: zsccsds/YOLOv3_PyTorch ## Basic Information - **Project Name**: YOLOv3_PyTorch - **Description**: Full implementation of YOLOv3 in PyTorch - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-04-20 - **Last Updated**: 2021-10-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # YOLOv3 Full implementation of YOLOv3 in PyTorch. ## Overview #### YOLOv3: An Incremental Improvement [[Paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[Original Implementation]](https://github.com/pjreddie/darknet) #### Why this project * Implement YOLOv3 and darknet53 without original darknet cfg parser. * It is easy to custom your backbone network. Such as resnet, densenet... ## Installation ##### Environment * pytorch >= 0.4.0 * python >= 3.6.0 ##### Get code ``` git clone https://github.com/BobLiu20/YOLOv3_PyTorch.git cd YOLOv3_PyTorch pip3 install -r requirements.txt --user ``` ##### Download COCO dataset ``` cd data/ bash get_coco_dataset.sh ``` ## Training ##### Download pretrained weights 1. See [weights readme](weights/README.md) for detail. 2. Download pretrained backbone wegiths from [Google Drive](https://drive.google.com/open?id=1VYwHUznM3jLD7ftmOSCHnpkVpBJcFIOA) or [Baidu Drive](https://pan.baidu.com/s/1axXjz6ct9Rn9GtDTust6DA) 3. Move downloaded file ```darknet53_weights_pytorch.pth``` to ```wegihts``` folder in this project. ##### Modify training parameters 1. Review config file ```training/params.py``` 2. Replace ```YOUR_WORKING_DIR``` to your working directory. Use for save model and tmp file. 3. Adjust your GPU device. see parallels. 4. Adjust other parameters. ##### Start training ``` cd training python training.py params.py ``` ##### Option: Visualizing training ``` # please install tensorboard in first python -m tensorboard.main --logdir=YOUR_WORKING_DIR ```