- - - - - - -
## 1 线性调频信号
### 1.1 线性调频信号(时域)
#### 1.1.1 线性调频信号模型
**线性调频信号(Chirp, LFM)** 是指瞬时频率随时间线性变化的信号。 **(1)时域表达式**
s
(
t
)
=
r
e
c
t
(
t
T
)
exp
(
j
π
K
t
2
)
s\left( t \right) = rect\left( {\frac{t}{T}} \right)\exp \left( {j\pi K{t^2}} \right)
s(t)=rect(Tt)exp(jπKt2) 其中,T 为时宽,K 为调频率,rect() 为矩形窗函数。 **(2)相位**
φ
(
t
)
=
π
K
t
2
\varphi \left( t \right) = \pi K{t^2}
φ(t)=πKt2 **(3)瞬时频率**
f
(
t
)
=
1
2
π
d
φ
(
t
)
d
t
=
1
2
π
d
(
π
K
t
2
)
d
t
=
K
t
f\left( t \right) = \frac{1}{{2\pi }}\frac{{d\varphi \left( t \right)}}{{dt}} = \frac{1}{{2\pi }}\frac{{d\left( {\pi K{t^2}} \right)}}{{dt}} = Kt
f(t)=2π1dtdφ(t)=2π1dtd(πKt2)=Kt **(4)信号带宽**
B
W
=
∣
K
∣
T
BW = \left| K \right|T
BW=∣K∣T **(5)时间带宽积**
T
B
P
=
∣
K
∣
T
2
TBP = \left| K \right|{T^2}
TBP=∣K∣T2
#### 1.1.2 线性调频信号时域仿真
**(1)信号参数** ① 时宽 Tr = 1 us ② 带宽 Br = 100 MHz ③ 采样率 Fs = 4 * Br
**(2)仿真结果**
**信号实部**
**信号虚部**
**信号频率**
**信号相位**
|------
### 1.2 线性调频信号(频域)
#### 1.2.1 驻定相位原理(POSP)
**(1)基本原理** 信号在**相位驻留点邻域**附近是**缓变**的,而在其他时间点_上是**迅变**的,相位迅变处由于相位周期的正负部分相互抵消,故其对积分的贡献几乎为零,**对积分起主要作用的部分集中在相位驻留点附近**。 因此,驻定相位原理适用于**相位包含二次及高次项**,且**包络缓变**的信号频谱求解;’
对于包络
w
(
t
)
w\left( t \right)
w(t) 缓变,且相位
ϕ
(
t
)
{\phi \left( t \right)}
ϕ(t) 包含高次项的信号
g
(
t
)
=
w
(
t
)
⋅
exp
{
j
⋅
ϕ
(
t
)
}
g\left( t \right) = w\left( t \right) \cdot \exp \left\{ {j \cdot \phi \left( t \right)} \right\}
g(t)=w(t)⋅exp{j⋅ϕ(t)} 根据POSP求解其频谱为:
G
(
f
)
=
∫
−
∞
+
∞
w
(
t
)
⋅
exp
{
j
⋅
ϕ
(
t
)
}
⋅
exp
(
−
j
2
π
f
t
)
d
t
=
∫
−
∞
+
∞
w
(
t
)
⋅
exp
{
j
⋅
[
ϕ
(
t
)
−
2
π
f
t
]
}
d
t
=
∫
−
∞
+
∞
w
(
t
)
⋅
exp
{
j
⋅
θ
(
t
)
}
d
t
≈
P
O
S
P
w
[
t
(
f
)
]
⋅
exp
{
j
⋅
θ
[
t
(
f
)
]
}
\begin{aligned} G\left( f \right) &= \int_{ - \infty }^{ + \infty } {w\left( t \right) \cdot \exp \left\{ {j \cdot \phi \left( t \right)} \right\}} \cdot \exp \left( { - j2\pi ft} \right)dt \\ &= \int_{ - \infty }^{ + \infty } {w\left( t \right) \cdot \exp \left\{ {j \cdot \left[ {\phi \left( t \right) - 2\pi ft} \right]} \right\}} dt \\ &= \int_{ - \infty }^{ + \infty } {w\left( t \right) \cdot \exp \left\{ {j \cdot \theta \left( t \right)} \right\}} dt \\ &\mathop \approx \limits^{POSP} w\left[ {t\left( f \right)} \right] \cdot \exp \left\{ {j \cdot \theta \left[ {t\left( f \right)} \right]} \right\} \end{aligned}
G(f)=∫−∞+∞w(t)⋅exp{j⋅ϕ(t)}⋅exp(−j2πft)dt=∫−∞+∞w(t)⋅exp{j⋅[ϕ(t)−2πft]}dt=∫−∞+∞w(t)⋅exp{j⋅θ(t)}dt≈POSPw[t(f)]⋅exp{j⋅θ[t(f)]}
**(2)POSP求解步骤** **① 待求解信号**
g
(
t
)
=
w
(
t
)
⋅
exp
{
j
⋅
ϕ
(
t
)
}
g\left( t \right) = w\left( t \right) \cdot \exp \left\{ {j \cdot \phi \left( t \right)} \right\}
g(t)=w(t)⋅exp{j⋅ϕ(t)} 其中,包络
w
(
t
)
w\left( t \right)
w(t) 缓变,且相位
ϕ
(
t
)
{\phi \left( t \right)}
ϕ(t) 包含高次项。 **② 相位函数**
θ
(
t
)
=
ϕ
(
t
)
−
2
π
f
t
\theta \left( t \right) = \phi \left( t \right) - 2\pi ft
θ(t)=ϕ(t)−2πft 其中,t 为自变量,f 为参数。 **③ 求解驻留点** 令:
d
d
t
θ
(
t
)
=
d
d
t
[
ϕ
(
t
)
−
2
π
f
t
]
=
0
\frac{d}{{dt}}\theta \left( t \right) = \frac{d}{{dt}}\left[ {\phi \left( t \right) - 2\pi ft} \right] = 0
dtdθ(t)=dtd[ϕ(t)−2πft]=0 求解方程得到驻留点
t
(
f
)
t\left( f \right)
t(f) **④ 将驻留点代入频谱得解**
G
(
f
)
≈
P
O
S
P
2
π
∣
ϕ
′
′
[
t
(
f
)
]
∣
⋅
w
[
t
(
f
)
]
⋅
exp
{
j
[
θ
(
t
(
f
)
)
+
π
4
]
}
≈
w
[
t
(
f
)
]
⋅
exp
{
j
⋅
θ
[
t
(
f
)
]
}
G\left( f \right)\mathop \approx \limits^{POSP} \sqrt {\frac{{2\pi }}{{\left| {\phi ''\left[ {t\left( f \right)} \right]} \right|}}} \cdot w\left[ {t\left( f \right)} \right] \cdot \exp \left\{ {j\left[ {\theta \left( {t\left( f \right)} \right) + \frac{\pi }{4}} \right]} \right\} \approx w\left[ {t\left( f \right)} \right]\cdot\exp \left\{ {j\cdot\theta \left[ {t\left( f \right)} \right]} \right\}
G(f)≈POSP∣ϕ′′[t(f)]∣2π
⋅w[t(f)]⋅exp{j[θ(t(f))+4π]}≈w[t(f)]⋅exp{j⋅θ[t(f)]}
#### 1.2.2 线性调频信号频谱
直接对线性调频信号求傅里叶变换:
S
(
f
)
=
∫
−
∞
+
∞
r
e
c
t
(
t
T
)
exp
(
j
π
K
t
2
)
exp
(
−
j
2
π
f
t
)
d
t
S\left( f \right) = \int_{ - \infty }^{ + \infty } {rect\left( {\frac{t}{T}} \right)\exp \left( {j\pi K{t^2}} \right)\exp \left( { - j2\pi ft} \right)dt}
S(f)=∫−∞+∞rect(Tt)exp(jπKt2)exp(−j2πft)dt 积分内存在指数上方的二次项积分,无法直接求解。故采用驻点相位定理求解如下: 令相位函数:
θ
(
t
)
=
π
K
t
2
−
2
π
f
t
\theta \left( t \right) = \pi K{t^2} - 2\pi ft
θ(t)=πKt2−2πft 求导等于0:
d
d
t
θ
(
t
)
=
d
d
t
(
π
K
t
2
−
2
π
f
t
)
=
2
π
K
t
−
2
π
f
=
0
\frac{d}{{dt}}\theta \left( t \right) = \frac{d}{{dt}}\left( {\pi K{t^2} - 2\pi ft} \right) = 2\pi Kt - 2\pi f = 0
dtdθ(t)=dtd(πKt2−2πft)=2πKt−2πf=0 得驻定相位点为:
t
(
f
)
=
f
K
t\left( f \right) = \frac{f}{K}
t(f)=Kf 因此:
w
[
t
(
f
)
]
=
r
e
c
t
(
t
(
f
)
T
)
=
r
e
c
t
(
f
K
T
)
w\left[ {t\left( f \right)} \right] = rect\left( {\frac{{t\left( f \right)}}{T}} \right) = rect\left( {\frac{f}{{KT}}} \right)
w[t(f)]=rect(Tt(f))=rect(KTf)
θ
[
t
(
f
)
]
=
π
K
t
2
(
f
)
−
2
π
f
t
(
f
)
=
π
K
(
f
K
)
2
−
2
π
f
(
f
K
)
=
−
π
f
2
K
\theta \left[ {t\left( f \right)} \right] = \pi K{t^2}\left( f \right) - 2\pi ft\left( f \right) = \pi K{\left( {\frac{f}{K}} \right)^2} - 2\pi f\left( {\frac{f}{K}} \right) = - \pi \frac{{{f^2}}}{K}
θ[t(f)]=πKt2(f)−2πft(f)=πK(Kf)2−2πf(Kf)=−πKf2 从而得到线性调频信号频谱为:
S
(
f
)
=
w
[
t
(
f
)
]
⋅
exp
{
j
⋅
θ
[
t
(
f
)
]
}
=
r
e
c
t
(
f
K
T
)
⋅
exp
{
−
j
π
f
2
K
}
S\left( f \right) = w\left[ {t\left( f \right)} \right] \cdot \exp \left\{ {j \cdot \theta \left[ {t\left( f \right)} \right]} \right\} = rect\left( {\frac{f}{{KT}}} \right) \cdot \exp \left\{ { - j\pi \frac{{{f^2}}}{K}} \right\}
S(f)=w[t(f)]⋅exp{j⋅θ[t(f)]}=rect(KTf)⋅exp{−jπKf2}
且TBP越大,POSP越准确(因为TBP越大,实际频谱越接近矩形窗)。
#### 1.2.3 线性调频信号频谱仿真
幅度谱
相位谱
|------
## 2 脉冲压缩
### 2.1 匹配滤波器
匹配滤波器是**线性系统**的**最大信噪比**滤波器。信号和噪声叠加在一起,匹配滤波使信号成分在某一瞬时出现峰值,而噪声成分受到抑制,即使输出的信噪比最大。
#### 2.1.1 匹配滤波器推导
设 t=tm 时刻输出信噪比最大,信噪比表示为:
ρ
=
s
o
2
(
t
m
)
n
o
2
(
t
m
)
\rho = \frac{{s_o^2\left( {{t_m}} \right)}}{{n_o^2\left( {{t_m}} \right)}}
ρ=no2(tm)so2(tm) 利用频域表达式可得输出信号为:
s
o
(
t
)
=
F
−
1
{
S
(
j
ω
)
H
(
j
ω
)
}
=
1
2
π
∫
−
∞
+
∞
S
(
j
ω
)
H
(
j
ω
)
exp
(
j
ω
t
)
d
ω
{s_o}\left( t \right) = {\mathscr{F}^{ - 1}}\left\{ {S\left( {j\omega } \right)H\left( {j\omega } \right)} \right\} = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {S\left( {j\omega } \right)H\left( {j\omega } \right)\exp \left( {j\omega t} \right)d\omega }
so(t)=F−1{S(jω)H(jω)}=2π1∫−∞+∞S(jω)H(jω)exp(jωt)dω 白噪声平均功率为:
n
o
2
(
t
)
‾
=
1
2
π
∫
−
∞
+
∞
N
⋅
∣
H
(
j
ω
)
∣
2
d
ω
\overline {n_o^2\left( t \right)} = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {N \cdot {{\left| {H\left( {j\omega } \right)} \right|}^2}d\omega }
no2(t)=2π1∫−∞+∞N⋅∣H(jω)∣2dω 则信噪比可表示为:
ρ
=
s
o
2
(
t
m
)
n
o
2
(
t
m
)
‾
=
∣
∫
−
∞
+
∞
S
(
j
ω
)
H
(
j
ω
)
exp
(
j
ω
t
m
)
d
ω
∣
2
2
π
N
⋅
∫
−
∞
+
∞
∣
H
(
j
ω
)
∣
2
d
ω
\rho = \frac{{s_o^2\left( {{t_m}} \right)}}{{\overline {n_o^2\left( {{t_m}} \right)} }} = \frac{{{{\left| {\int_{ - \infty }^{ + \infty } {S\left( {j\omega } \right)H\left( {j\omega } \right)\exp \left( {j\omega {t_m}} \right)d\omega } } \right|}^2}}}{{2\pi N \cdot \int_{ - \infty }^{ + \infty } {{{\left| {H\left( {j\omega } \right)} \right|}^2}d\omega } }}
ρ=no2(tm)so2(tm)=2πN⋅∫−∞+∞∣H(jω)∣2dω∣∣∣∫−∞+∞S(jω)H(jω)exp(jωtm)dω∣∣∣2 根据柯西不等式:
∣
∫
−
∞
+
∞
H
(
j
ω
)
S
(
j
ω
)
exp
(
j
ω
t
m
)
d
ω
∣
2
⩽
∫
−
∞
+
∞
∣
H
(
j
ω
)
∣
2
d
ω
⋅
∫
−
∞
+
∞
∣
S
(
j
ω
)
exp
(
j
ω
t
m
)
∣
2
d
ω
{\left| {\int_{ - \infty }^{ + \infty } {H\left( {j\omega } \right)S\left( {j\omega } \right)\exp \left( {j\omega {t_m}} \right)d\omega } } \right|^2} \leqslant \int_{ - \infty }^{ + \infty } {{{\left| {H\left( {j\omega } \right)} \right|}^2}d\omega } \cdot \int_{ - \infty }^{ + \infty } {{{\left| {S\left( {j\omega } \right)\exp \left( {j\omega {t_m}} \right)} \right|}^2}d\omega }
∣∣∣∣∫−∞+∞H(jω)S(jω)exp(jωtm)dω∣∣∣∣2⩽∫−∞+∞∣H(jω)∣2dω⋅∫−∞+∞∣S(jω)exp(jωtm)∣2dω 当且仅当
H
(
j
ω
)
=
k
[
S
(
j
ω
)
exp
(
j
ω
t
m
)
]
∗
H\left( {j\omega } \right) = k{\left[ {S\left( {j\omega } \right)\exp \left( {j\omega {t_m}} \right)} \right]^ * }
H(jω)=k[S(jω)exp(jωtm)]∗ 时,等号成立,即信噪比取得最大值。
最终,得到匹配滤波器为
H
(
j
ω
)
=
k
⋅
S
(
−
j
ω
)
⋅
exp
(
−
j
ω
t
m
)
H\left( {j\omega } \right) = k \cdot S\left( { - j\omega } \right) \cdot \exp \left( { - j\omega {t_m}} \right)
H(jω)=k⋅S(−jω)⋅exp(−jωtm) 两端同取傅里叶逆变换,并根据傅里叶变换的频移性质可得:
h
(
t
)
=
k
⋅
s
(
t
m
−
t
)
‾
h\left( t \right) = k \cdot \overline {s\left( {{t_m} - t} \right)}
h(t)=k⋅s(tm−t) 一般地,取
k
=
1
,
t
m
=
0
k=1,t_m=0
k=1,tm=0
h
(
t
)
=
s
(
−
t
)
‾
h\left( t \right) = \overline {s\left( { - t} \right)}
h(t)=s(−t)
#### 2.1.2 匹配滤波器理解
匹配滤波器系统输出为:
s
o
(
t
)
=
s
(
t
)
∗
h
(
t
)
=
∫
−
∞
+
∞
s
(
τ
)
h
(
t
−
τ
)
d
τ
{s_o}\left( t \right) = s\left( t \right) * h\left( t \right) = \int_{ - \infty }^{ + \infty } {s\left( \tau \right)h\left( {t - \tau } \right)d\tau }
so(t)=s(t)∗h(t)=∫−∞+∞s(τ)h(t−τ)dτ 由于
h
(
t
)
=
s
(
−
t
)
‾
h\left( t \right) = \overline {s\left( { - t} \right)}
h(t)=s(−t),因此输出也可写作
s
o
(
t
)
=
∫
−
∞
+
∞
s
(
τ
)
s
(
τ
−
t
)
‾
d
τ
{s_o}\left( t \right) = \int_{ - \infty }^{ + \infty } {s\left( \tau \right)\overline {s\left( {\tau - t} \right)} d\tau }
so(t)=∫−∞+∞s(τ)s(τ−t)dτ
可见,匹配滤波的过程可看作**接收信号sr**与**系统冲激响应ht**的**卷积**
`so = conv( sr , ht) = conv( sr , conj(fliplr( si )) );`
也可看作**发射信号si**与**接收信号sr**的**相关**。
`so = xcorr( sr , si );`
### 2.2 线性调频信号脉冲压缩的匹配滤波实现
对于线性调频信号,时域为:
s
(
t
)
=
r
e
c
t
(
t
T
)
exp
(
j
π
K
t
2
)
s\left( t \right) = rect\left( {\frac{t}{T}} \right)\exp \left( {j\pi K{t^2}} \right)
s(t)=rect(Tt)exp(jπKt2) 频谱为:
S
(
f
)
=
r
e
c
t
(
f
K
T
)
⋅
exp
{
−
j
π
f
2
K
}
S\left( f \right) = rect\left( {\frac{f}{{KT}}} \right)\cdot\exp \left\{ { - j\pi \frac{{{f^2}}}{K}} \right\}
S(f)=rect(KTf)⋅exp{−jπKf2}
#### 2.2.1 时域匹配滤波
>
根据
h
(
t
)
=
s
(
−
t
)
‾
h\left( t \right) = \overline {s\left( { - t} \right)}
h(t)=s(−t) 可构造时域匹配滤波器为**发射信号时间反褶再取共轭**。再与发射信号进行**线性卷积**即可实现脉冲压缩:
s
o
(
t
)
=
s
(
t
)
∗
s
(
−
t
)
‾
{s_o}\left( t \right) = s\left( t \right) * \overline {s\left( { - t} \right)}
so(t)=s(t)∗s(−t)
#### 2.2.2 频域匹配滤波
##### 2.2.2.1 方法一
**(1)原理**
>
将**发射信号时间反褶后取共轭**,**补零后计算FFT**;再与信号补零后的FFT在频域相乘,最后IFFT。
s
o
(
t
)
=
I
F
F
T
{
F
F
T
[
s
(
−
t
)
‾
,
N
]
⋅
F
F
T
[
s
(
t
)
,
N
]
}
{s_o}\left( t \right) = \mathscr{ IFFT}\left\{ {\mathscr{FFT}\left[ {\overline {s\left( { - t} \right)} ,N} \right] \cdot \mathscr{FFT}\left[ {s\left( t \right),N} \right]} \right\}
so(t)=IFFT{FFT[s(−t),N]⋅FFT[s(t),N]}
**(2)说明**
- 为什么需要补零? 因为匹配滤波需要计算线性卷积,但 (DFT) FFT 计算的是**循环卷积**,所以需要对信号进行补零直到长度超过线性卷积的长度。对于点数分别为N1与N2的两信号,它们线性卷积的长度为 N1+N2-1;若循环卷积长度为N,则有如下关系: ① N < N1 + N2 - 1 时,循环卷积是线性卷积长度为 N 的混叠 ② N = N1 + N2 - 1 时,循环卷积 = 线性卷积 ③ N > N1 + N2 - 1 时,循环卷积 = 线性卷积末尾补 N-(N1+N2-1) 个 0 (**弃置区**) - 弃置区位置 由于发射是反褶后再补零,故最终得到IFFT结果后,**弃置区位于信号前端**。
**(3)仿真**
##### 2.2.2.2 方法二
**(1)原理**
>
将**发射脉冲补零后进行FFT**,**再取共轭(无需反褶)**,与信号补零FFT在频域相乘,最后IFFT。
s
o
(
t
)
=
I
F
F
T
{
F
F
T
[
s
(
t
)
,
N
]
‾
⋅
F
F
T
[
s
(
t
)
,
N
]
}
{s_o}\left( t \right) = \mathscr{IFFT}\left\{ {\overline {\mathscr{FFT}\left[ {s\left( t \right),N} \right]} \cdot \mathscr{FFT}\left[ {s\left( t \right),N} \right]} \right\}
so(t)=IFFT{FFT[s(t),N]⋅FFT[s(t),N]}
**直接在频域生成匹配滤波器**
H
(
f
)
=
r
e
c
t
{
f
∣
K
∣
T
}
exp
{
j
π
f
2
K
}
H\left( f \right) = rect\left\{ {\frac{f}{{\left| K \right|T}}} \right\}\exp \left\{ {j\pi \frac{{{f^2}}}{K}} \right\}
H(f)=rect{∣K∣Tf}exp{jπKf2} 与信号FFT在频域相乘,最后IFFT。
s
o
(
t
)
=
I
F
F
T
{
F
F
T
[
s
(
t
)
]
⋅
H
(
f
)
}
{s_o}\left( t \right) = \mathscr{IFFT}\left\{ {\mathscr{FFT}\left[ {s\left( t \right)} \right] \cdot H\left( f \right)} \right\}
so(t)=IFFT{FFT[s(t)]⋅H(f)}
## 3 脉冲压缩测距仿真
### 3.1 实现流程
- **参数设置** `信号时宽 T = 6 us 信号带宽 B = 400 MHz 目标距离 R = [ 995, 1000, 1001, 1005 ] m 后向散射 σ = [ 1, 1.5 , 2.25, 3.375]`- **系统参数导出** `采样率 Fs = 5 * B 调频率 K = B / T 采样点数 N = round( T * Fs )`- **目标参数导出** `目标个数 M = length( R ) 中心距离 R0 = mean( R ) 最大探测距离范围 Rwid = T * c / 2 最远探测距离 Rmax = floor( R0 + Rwid / 2 ) 最近探测距离 Rmax = floor( R0 - Rwid / 2 )`- **回波参数** `发射时间序列 t = linspace( 2 * Rmin / c , 2 * Rmax / c , N ) 回波时间序列 td = t - 2 * R / c`
**回波信号**
s
r
(
t
)
=
σ
⋅
r
e
c
t
(
t
d
T
)
⋅
exp
(
j
π
K
⋅
t
d
2
)
{s_r}\left( t \right) = \sigma \cdot rect\left( {\frac{{{t_d}}}{T}} \right) \cdot \exp \left( {j\pi K \cdot t_d^2} \right)
sr(t)=σ⋅rect(Ttd)⋅exp(jπK⋅td2)
**脉冲压缩** 方式2
s
o
(
t
)
=
I
F
F
T
{
F
F
T
[
s
t
(
t
)
,
N
f
f
t
]
‾
⋅
F
F
T
[
s
r
(
t
)
,
N
f
f
t
]
}
{s_o}\left( t \right) = \mathscr{IFFT}\left\{ {\overline {\mathscr{FFT}\left[ {s_t\left( t \right),N_{fft}} \right]} \cdot \mathscr{FFT}\left[ {s_r\left( t \right),N_{fft}} \right]} \right\}
so(t)=IFFT{FFT[st(t),Nfft]⋅FFT[sr(t),Nfft]}
- **弃置区处理** `脉压信号起始点 N0 = ( Nfft - N ) / 2 脉压信号截取 so = so( N0 , N0 + N -1 )`- **绘图**
### 3.2 仿真结果