代码拉取完成,页面将自动刷新
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.data import Data, DataLoader
import matplotlib.pyplot as plt
from utilities import *
from nn_conv import NNConv, NNConv_old
from timeit import default_timer
import scipy.io
class KernelNN(torch.nn.Module):
def __init__(self, width, ker_width, depth, ker_in, in_width=1, out_width=1):
super(KernelNN, self).__init__()
self.depth = depth
self.fc1 = torch.nn.Linear(in_width, width)
kernel = DenseNet([ker_in, ker_width, ker_width, width**2], torch.nn.ReLU)
self.conv1 = NNConv_old(width, width, kernel, aggr='mean')
self.fc2 = torch.nn.Linear(width, 1)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = self.fc1(x)
for k in range(self.depth):
x = F.relu(self.conv1(x, edge_index, edge_attr))
x = self.fc2(x)
return x
TRAIN_PATH = 'data/piececonst_r241_N1024_smooth1.mat'
TEST_PATH = 'data/piececonst_r241_N1024_smooth2.mat'
r = 4
s = int(((241 - 1)/r) + 1)
n = s**2
m = 100
k = 1
radius_train = 0.1
radius_test = 0.1
print('resolution', s)
ntrain = 100
ntest = 40
batch_size = 1
batch_size2 = 2
width = 64
ker_width = 1024
depth = 6
edge_features = 6
node_features = 6
epochs = 200
learning_rate = 0.0001
scheduler_step = 50
scheduler_gamma = 0.8
path = 'UAI1_r'+str(s)+'_n'+ str(ntrain)
path_model = 'model/'+path+''
path_train_err = 'results/'+path+'train.txt'
path_test_err = 'results/'+path+'test.txt'
path_image = 'image/'+path+''
path_train_err = 'results/'+path+'train'
path_test_err16 = 'results/'+path+'test16'
path_test_err31 = 'results/'+path+'test31'
path_test_err61 = 'results/'+path+'test61'
path_image_train = 'image/'+path+'train'
path_image_test16 = 'image/'+path+'test16'
path_image_test31 = 'image/'+path+'test31'
path_image_test61 = 'image/'+path+'test61'
t1 = default_timer()
reader = MatReader(TRAIN_PATH)
train_a = reader.read_field('coeff')[:ntrain,::r,::r].reshape(ntrain,-1)
train_a_smooth = reader.read_field('Kcoeff')[:ntrain,::r,::r].reshape(ntrain,-1)
train_a_gradx = reader.read_field('Kcoeff_x')[:ntrain,::r,::r].reshape(ntrain,-1)
train_a_grady = reader.read_field('Kcoeff_y')[:ntrain,::r,::r].reshape(ntrain,-1)
train_u = reader.read_field('sol')[:ntrain,::r,::r].reshape(ntrain,-1)
train_u64 = reader.read_field('sol')[:ntrain,::r,::r].reshape(ntrain,-1)
reader.load_file(TEST_PATH)
test_a = reader.read_field('coeff')[:ntest,::4,::4].reshape(ntest,-1)
test_a_smooth = reader.read_field('Kcoeff')[:ntest,::4,::4].reshape(ntest,-1)
test_a_gradx = reader.read_field('Kcoeff_x')[:ntest,::4,::4].reshape(ntest,-1)
test_a_grady = reader.read_field('Kcoeff_y')[:ntest,::4,::4].reshape(ntest,-1)
test_u = reader.read_field('sol')[:ntest,::4,::4].reshape(ntest,-1)
a_normalizer = GaussianNormalizer(train_a)
train_a = a_normalizer.encode(train_a)
test_a = a_normalizer.encode(test_a)
as_normalizer = GaussianNormalizer(train_a_smooth)
train_a_smooth = as_normalizer.encode(train_a_smooth)
test_a_smooth = as_normalizer.encode(test_a_smooth)
agx_normalizer = GaussianNormalizer(train_a_gradx)
train_a_gradx = agx_normalizer.encode(train_a_gradx)
test_a_gradx = agx_normalizer.encode(test_a_gradx)
agy_normalizer = GaussianNormalizer(train_a_grady)
train_a_grady = agy_normalizer.encode(train_a_grady)
test_a_grady = agy_normalizer.encode(test_a_grady)
test_a = test_a.reshape(ntest,61,61)
test_a_smooth = test_a_smooth.reshape(ntest,61,61)
test_a_gradx = test_a_gradx.reshape(ntest,61,61)
test_a_grady = test_a_grady.reshape(ntest,61,61)
test_u = test_u.reshape(ntest,61,61)
test_a16 =test_a[:ntest,::4,::4].reshape(ntest,-1)
test_a_smooth16 = test_a_smooth[:ntest,::4,::4].reshape(ntest,-1)
test_a_gradx16 = test_a_gradx[:ntest,::4,::4].reshape(ntest,-1)
test_a_grady16 = test_a_grady[:ntest,::4,::4].reshape(ntest,-1)
test_u16 = test_u[:ntest,::4,::4].reshape(ntest,-1)
test_a31 =test_a[:ntest,::2,::2].reshape(ntest,-1)
test_a_smooth31 = test_a_smooth[:ntest,::2,::2].reshape(ntest,-1)
test_a_gradx31 = test_a_gradx[:ntest,::2,::2].reshape(ntest,-1)
test_a_grady31 = test_a_grady[:ntest,::2,::2].reshape(ntest,-1)
test_u31 = test_u[:ntest,::2,::2].reshape(ntest,-1)
test_a =test_a.reshape(ntest,-1)
test_a_smooth = test_a_smooth.reshape(ntest,-1)
test_a_gradx = test_a_gradx.reshape(ntest,-1)
test_a_grady = test_a_grady.reshape(ntest,-1)
test_u = test_u.reshape(ntest,-1)
u_normalizer = GaussianNormalizer(train_u)
train_u = u_normalizer.encode(train_u)
# test_u = y_normalizer.encode(test_u)
meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[s,s])
edge_index = meshgenerator.ball_connectivity(radius_train)
grid = meshgenerator.get_grid()
# meshgenerator.get_boundary()
# edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride)
data_train = []
for j in range(ntrain):
edge_attr = meshgenerator.attributes(theta=train_a[j,:])
# edge_attr_boundary = meshgenerator.attributes_boundary(theta=train_u[j,:])
data_train.append(Data(x=torch.cat([grid, train_a[j,:].reshape(-1, 1),
train_a_smooth[j,:].reshape(-1, 1), train_a_gradx[j,:].reshape(-1, 1), train_a_grady[j,:].reshape(-1, 1)
], dim=1),
y=train_u[j,:], coeff=train_a[j,:],
edge_index=edge_index, edge_attr=edge_attr,
# edge_index_boundary=edge_index_boundary, edge_attr_boundary= edge_attr_boundary
))
print('train grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape)
meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[16,16])
edge_index = meshgenerator.ball_connectivity(radius_test)
grid = meshgenerator.get_grid()
# meshgenerator.get_boundary()
# edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride)
data_test16 = []
for j in range(ntest):
edge_attr = meshgenerator.attributes(theta=test_a16[j,:])
# edge_attr_boundary = meshgenerator.attributes_boundary(theta=test_a[j, :])
data_test16.append(Data(x=torch.cat([grid, test_a16[j,:].reshape(-1, 1),
test_a_smooth16[j,:].reshape(-1, 1), test_a_gradx16[j,:].reshape(-1, 1), test_a_grady16[j,:].reshape(-1, 1)
], dim=1),
y=test_u16[j, :], coeff=test_a16[j,:],
edge_index=edge_index, edge_attr=edge_attr,
# edge_index_boundary=edge_index_boundary, edge_attr_boundary=edge_attr_boundary
))
print('16 grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape)
# print('edge_index_boundary', edge_index_boundary.shape, 'edge_attr', edge_attr_boundary.shape)
meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[31,31])
edge_index = meshgenerator.ball_connectivity(radius_test)
grid = meshgenerator.get_grid()
# meshgenerator.get_boundary()
# edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride)
data_test31 = []
for j in range(ntest):
edge_attr = meshgenerator.attributes(theta=test_a31[j,:])
# edge_attr_boundary = meshgenerator.attributes_boundary(theta=test_a[j, :])
data_test31.append(Data(x=torch.cat([grid, test_a31[j,:].reshape(-1, 1),
test_a_smooth31[j,:].reshape(-1, 1), test_a_gradx31[j,:].reshape(-1, 1), test_a_grady31[j,:].reshape(-1, 1)
], dim=1),
y=test_u31[j, :], coeff=test_a31[j,:],
edge_index=edge_index, edge_attr=edge_attr,
# edge_index_boundary=edge_index_boundary, edge_attr_boundary=edge_attr_boundary
))
print('31 grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape)
# print('edge_index_boundary', edge_index_boundary.shape, 'edge_attr', edge_attr_boundary.shape)
meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[61,61])
edge_index = meshgenerator.ball_connectivity(radius_test)
grid = meshgenerator.get_grid()
# meshgenerator.get_boundary()
# edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride)
data_test61 = []
for j in range(ntest):
edge_attr = meshgenerator.attributes(theta=test_a[j,:])
# edge_attr_boundary = meshgenerator.attributes_boundary(theta=test_a[j, :])
data_test61.append(Data(x=torch.cat([grid, test_a[j,:].reshape(-1, 1),
test_a_smooth[j,:].reshape(-1, 1), test_a_gradx[j,:].reshape(-1, 1), test_a_grady[j,:].reshape(-1, 1)
], dim=1),
y=test_u[j, :], coeff=test_a[j,:],
edge_index=edge_index, edge_attr=edge_attr,
# edge_index_boundary=edge_index_boundary, edge_attr_boundary=edge_attr_boundary
))
print('61 grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape)
# print('edge_index_boundary', edge_index_boundary.shape, 'edge_attr', edge_attr_boundary.shape)
train_loader = DataLoader(data_train, batch_size=batch_size, shuffle=True)
test_loader16 = DataLoader(data_test16, batch_size=batch_size2, shuffle=False)
test_loader31 = DataLoader(data_test31, batch_size=batch_size2, shuffle=False)
test_loader61 = DataLoader(data_test61, batch_size=batch_size2, shuffle=False)
##################################################################################################
### training
##################################################################################################
t2 = default_timer()
print('preprocessing finished, time used:', t2-t1)
device = torch.device('cuda')
model = KernelNN(width,ker_width,depth,edge_features,node_features).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=scheduler_step, gamma=scheduler_gamma)
myloss = LpLoss(size_average=False)
u_normalizer.cuda()
model.train()
ttrain = np.zeros((epochs, ))
ttest16 = np.zeros((epochs,))
ttest31 = np.zeros((epochs,))
ttest61 = np.zeros((epochs,))
for ep in range(epochs):
t1 = default_timer()
train_mse = 0.0
train_l2 = 0.0
for batch in train_loader:
batch = batch.to(device)
optimizer.zero_grad()
out = model(batch)
mse = F.mse_loss(out.view(-1, 1), batch.y.view(-1,1))
# mse.backward()
loss = torch.norm(out.view(-1) - batch.y.view(-1),1)
loss.backward()
l2 = myloss(u_normalizer.decode(out.view(batch_size,-1)), u_normalizer.decode(batch.y.view(batch_size, -1)))
# l2.backward()
optimizer.step()
train_mse += mse.item()
train_l2 += l2.item()
scheduler.step()
t2 = default_timer()
model.eval()
ttrain[ep] = train_l2/(ntrain * k)
print(ep, ' time:', t2-t1, ' train_mse:', train_mse/len(train_loader))
t1 = default_timer()
u_normalizer.cpu()
model = model.cpu()
test_l2_16 = 0.0
test_l2_31 = 0.0
test_l2_61 = 0.0
with torch.no_grad():
for batch in test_loader16:
out = model(batch)
test_l2_16 += myloss(u_normalizer.decode(out.view(batch_size2,-1)),
batch.y.view(batch_size2, -1))
for batch in test_loader31:
out = model(batch)
test_l2_31 += myloss(u_normalizer.decode(out.view(batch_size2, -1)),
batch.y.view(batch_size2, -1))
for batch in test_loader61:
out = model(batch)
test_l2_61 += myloss(u_normalizer.decode(out.view(batch_size2, -1)),
batch.y.view(batch_size2, -1))
ttest16[ep] = test_l2_16 / ntest
ttest31[ep] = test_l2_31 / ntest
ttest61[ep] = test_l2_61 / ntest
t2 = default_timer()
print(' time:', t2-t1, ' train_mse:', train_mse/len(train_loader),
' test16:', test_l2_16/ntest, ' test31:', test_l2_31/ntest, ' test61:', test_l2_61/ntest)
np.savetxt(path_train_err + '.txt', ttrain)
np.savetxt(path_test_err16 + '.txt', ttest16)
np.savetxt(path_test_err31 + '.txt', ttest31)
np.savetxt(path_test_err61 + '.txt', ttest61)
torch.save(model, path_model)
##################################################################################################
### Ploting
##################################################################################################
resolution = s
data = train_loader.dataset[0]
coeff = data.coeff.numpy().reshape((resolution, resolution))
truth = u_normalizer.decode(data.y.reshape(1,-1)).numpy().reshape((resolution, resolution))
approx = u_normalizer.decode(model(data).reshape(1,-1)).detach().numpy().reshape((resolution, resolution))
_min = np.min(np.min(truth))
_max = np.max(np.max(truth))
plt.figure()
plt.subplot(1, 3, 1)
plt.imshow(truth, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Ground Truth')
plt.subplot(1, 3, 2)
plt.imshow(approx, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Approximation')
plt.subplot(1, 3, 3)
plt.imshow((approx - truth) ** 2)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Error')
plt.subplots_adjust(wspace=0.5, hspace=0.5)
plt.savefig(path_image_train + '.png')
resolution = 16
data = test_loader16.dataset[0]
coeff = data.coeff.numpy().reshape((resolution, resolution))
truth = data.y.numpy().reshape((resolution, resolution))
approx = u_normalizer.decode(model(data).reshape(1,-1)).detach().numpy().reshape((resolution, resolution))
_min = np.min(np.min(truth))
_max = np.max(np.max(truth))
plt.figure()
plt.subplot(1, 3, 1)
plt.imshow(truth, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Ground Truth')
plt.subplot(1, 3, 2)
plt.imshow(approx, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Approximation')
plt.subplot(1, 3, 3)
plt.imshow((approx - truth) ** 2)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Error')
plt.subplots_adjust(wspace=0.5, hspace=0.5)
plt.savefig(path_image_test16 + '.png')
resolution = 31
data = test_loader31.dataset[0]
coeff = data.coeff.numpy().reshape((resolution, resolution))
truth = data.y.numpy().reshape((resolution, resolution))
approx = u_normalizer.decode(model(data).reshape(1,-1)).detach().numpy().reshape((resolution, resolution))
_min = np.min(np.min(truth))
_max = np.max(np.max(truth))
# plt.figure()
plt.figure()
plt.subplot(1, 3, 1)
plt.imshow(truth, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Ground Truth')
plt.subplot(1, 3, 2)
plt.imshow(approx, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Approximation')
plt.subplot(1, 3, 3)
plt.imshow((approx - truth) ** 2)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Error')
plt.subplots_adjust(wspace=0.5, hspace=0.5)
plt.savefig(path_image_test31 + '.png')
resolution = 61
data = test_loader61.dataset[0]
coeff = data.coeff.numpy().reshape((resolution, resolution))
truth = data.y.numpy().reshape((resolution, resolution))
approx = u_normalizer.decode(model(data).reshape(1,-1)).detach().numpy().reshape((resolution, resolution))
_min = np.min(np.min(truth))
_max = np.max(np.max(truth))
# plt.figure()
plt.figure()
plt.subplot(1, 3, 1)
plt.imshow(truth, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Ground Truth')
plt.subplot(1, 3, 2)
plt.imshow(approx, vmin = _min, vmax=_max)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Approximation')
plt.subplot(1, 3, 3)
plt.imshow((approx - truth) ** 2)
plt.xticks([], [])
plt.yticks([], [])
plt.colorbar(fraction=0.046, pad=0.04)
plt.title('Error')
plt.subplots_adjust(wspace=0.5, hspace=0.5)
plt.savefig(path_image_test61 + '.png')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。