代码拉取完成,页面将自动刷新
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.data import Data, DataLoader
import matplotlib.pyplot as plt
from utilities import *
from nn_conv import NNConv, NNConv_old
from timeit import default_timer
import scipy.io
class KernelNN3(torch.nn.Module):
def __init__(self, width_node, width_kernel, depth, ker_in, in_width=1, out_width=1):
super(KernelNN3, self).__init__()
self.depth = depth
self.fc1 = torch.nn.Linear(in_width, width_node)
kernel = DenseNet([ker_in, width_kernel // 2, width_kernel, width_node**2], torch.nn.ReLU)
self.conv1 = NNConv_old(width_node, width_node, kernel, aggr='mean')
self.fc2 = torch.nn.Linear(width_node, 1)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = self.fc1(x)
for k in range(self.depth):
x = F.relu(self.conv1(x, edge_index, edge_attr))
x = self.fc2(x)
return x
TRAIN_PATH = 'data/piececonst_r241_N1024_smooth1.mat'
TEST_PATH = 'data/piececonst_r241_N1024_smooth2.mat'
for m in (100, 200, 400):
for radius_train in (0.05, 0.15, 0.4):
r = 2
s = int(((241 - 1)/r) + 1)
n = s**2
# m = 200
k = 5
# radius_train = 0.15
radius_test = radius_train
print('resolution', s)
ntrain = 100
ntest = 100
batch_size = 10
batch_size2 = 10
if radius_train == 0.4 and m==400:
batch_size = 2
batch_size2 = 2
if radius_train == 0.4 and m == 200:
batch_size = 5
batch_size2 = 5
# else:
width = 64
ker_width = 1000
depth = 6
edge_features = 6
node_features = 6
epochs = 200
learning_rate = 0.0001
scheduler_step = 50
scheduler_gamma = 0.5
path = 'UAI6_s'+str(s)+'_m'+ str(m)+'_radius'+ str(radius_train)
path_model = 'model/'+ path
path_train_err = 'results/'+ path + 'train.txt'
path_test_err = 'results/'+ path + 'test.txt'
path_image = 'results/'+ path
t1 = default_timer()
reader = MatReader(TRAIN_PATH)
train_a = reader.read_field('coeff')[:ntrain,::r,::r].reshape(ntrain,-1)
train_a_smooth = reader.read_field('Kcoeff')[:ntrain,::r,::r].reshape(ntrain,-1)
train_a_gradx = reader.read_field('Kcoeff_x')[:ntrain,::r,::r].reshape(ntrain,-1)
train_a_grady = reader.read_field('Kcoeff_y')[:ntrain,::r,::r].reshape(ntrain,-1)
train_u = reader.read_field('sol')[:ntrain,::r,::r].reshape(ntrain,-1)
reader.load_file(TEST_PATH)
test_a = reader.read_field('coeff')[:ntest,::r,::r].reshape(ntest,-1)
test_a_smooth = reader.read_field('Kcoeff')[:ntest,::r,::r].reshape(ntest,-1)
test_a_gradx = reader.read_field('Kcoeff_x')[:ntest,::r,::r].reshape(ntest,-1)
test_a_grady = reader.read_field('Kcoeff_y')[:ntest,::r,::r].reshape(ntest,-1)
test_u = reader.read_field('sol')[:ntest,::r,::r].reshape(ntest,-1)
a_normalizer = GaussianNormalizer(train_a)
train_a = a_normalizer.encode(train_a)
test_a = a_normalizer.encode(test_a)
as_normalizer = GaussianNormalizer(train_a_smooth)
train_a_smooth = as_normalizer.encode(train_a_smooth)
test_a_smooth = as_normalizer.encode(test_a_smooth)
agx_normalizer = GaussianNormalizer(train_a_gradx)
train_a_gradx = agx_normalizer.encode(train_a_gradx)
test_a_gradx = agx_normalizer.encode(test_a_gradx)
agy_normalizer = GaussianNormalizer(train_a_grady)
train_a_grady = agy_normalizer.encode(train_a_grady)
test_a_grady = agy_normalizer.encode(test_a_grady)
u_normalizer = UnitGaussianNormalizer(train_u)
train_u = u_normalizer.encode(train_u)
# test_u = y_normalizer.encode(test_u)
meshgenerator = RandomMeshGenerator([[0,1],[0,1]],[s,s], sample_size=m)
data_train = []
for j in range(ntrain):
for i in range(k):
idx = meshgenerator.sample()
grid = meshgenerator.get_grid()
edge_index = meshgenerator.ball_connectivity(radius_train)
edge_attr = meshgenerator.attributes(theta=train_a[j,:])
#data_train.append(Data(x=init_point.clone().view(-1,1), y=train_y[j,:], edge_index=edge_index, edge_attr=edge_attr))
data_train.append(Data(x=torch.cat([grid, train_a[j, idx].reshape(-1, 1),
train_a_smooth[j, idx].reshape(-1, 1), train_a_gradx[j, idx].reshape(-1, 1),
train_a_grady[j, idx].reshape(-1, 1)
], dim=1),
y=train_u[j, idx], edge_index=edge_index, edge_attr=edge_attr, sample_idx=idx
))
meshgenerator = RandomMeshGenerator([[0,1],[0,1]],[s,s], sample_size=m)
data_test = []
for j in range(ntest):
idx = meshgenerator.sample()
grid = meshgenerator.get_grid()
edge_index = meshgenerator.ball_connectivity(radius_test)
edge_attr = meshgenerator.attributes(theta=test_a[j,:])
data_test.append(Data(x=torch.cat([grid, test_a[j, idx].reshape(-1, 1),
test_a_smooth[j, idx].reshape(-1, 1), test_a_gradx[j, idx].reshape(-1, 1),
test_a_grady[j, idx].reshape(-1, 1)
], dim=1),
y=test_u[j, idx], edge_index=edge_index, edge_attr=edge_attr, sample_idx=idx
))
#
train_loader = DataLoader(data_train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(data_test, batch_size=batch_size2, shuffle=False)
t2 = default_timer()
print('preprocessing finished, time used:', t2-t1)
device = torch.device('cuda')
model = KernelNN3(width, ker_width,depth,edge_features,in_width=node_features).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=scheduler_step, gamma=scheduler_gamma)
myloss = LpLoss(size_average=False)
u_normalizer.cuda()
ttrain = np.zeros((epochs, ))
ttest = np.zeros((epochs,))
model.train()
for ep in range(epochs):
t1 = default_timer()
train_mse = 0.0
train_l2 = 0.0
for batch in train_loader:
batch = batch.to(device)
optimizer.zero_grad()
out = model(batch)
mse = F.mse_loss(out.view(-1, 1), batch.y.view(-1,1))
mse.backward()
l2 = myloss(
u_normalizer.decode(out.view(batch_size, -1), sample_idx=batch.sample_idx.view(batch_size, -1)),
u_normalizer.decode(batch.y.view(batch_size, -1), sample_idx=batch.sample_idx.view(batch_size, -1)))
optimizer.step()
train_mse += mse.item()
train_l2 += l2.item()
scheduler.step()
t2 = default_timer()
model.eval()
test_l2 = 0.0
with torch.no_grad():
for batch in test_loader:
batch = batch.to(device)
out = model(batch)
out = u_normalizer.decode(out.view(batch_size2,-1), sample_idx=batch.sample_idx.view(batch_size2,-1))
test_l2 += myloss(out, batch.y.view(batch_size2, -1)).item()
# test_l2 += myloss(out.view(batch_size2,-1), y_normalizer.encode(batch.y.view(batch_size2, -1))).item()
ttrain[ep] = train_l2/(ntrain * k)
ttest[ep] = test_l2/ntest
print(m, radius_train, ep, t2-t1, train_mse/len(train_loader), train_l2/(ntrain * k), test_l2/ntest)
np.savetxt(path_train_err, ttrain)
np.savetxt(path_test_err, ttest)
torch.save(model, path_model)
plt.figure()
# plt.plot(ttrain, label='train loss')
plt.plot(ttest, label='test loss')
plt.legend(loc='upper right')
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。