# keras-yolo4 **Repository Path**: zykobe24/keras-yolo4 ## Basic Information - **Project Name**: keras-yolo4 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-28 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # keras-yolo4 [![license](https://img.shields.io/github/license/mashape/apistatus.svg)](LICENSE) ## Introduction A Keras implementation of YOLOv4 (Tensorflow backend) inspired by [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet). Frame code from [https://github.com/qqwweee/keras-yolo3](https://github.com/qqwweee/keras-yolo3). ![](yolo4.png) --- ## Quick Start 1. Download YOLOv4 weights from [yolov4.weights](https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT). 2. Convert the Darknet YOLOv4 model to a Keras model. 3. Run YOLOv4 detection. ``` python convert.py ``` Running convert.py will get keras yolov4 weight file yolo4_weight.h5. ### Usage Inference ``` python test.py ``` --- ### Todo Debug train code with CIoU loss. Loss code from [https://github.com/david8862/keras-YOLOv3-model-set](https://github.com/david8862/keras-YOLOv3-model-set).