1 Star 0 Fork 1

asoiretop/车牌识别

forked from yeye0810/车牌识别 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
detector.py 3.80 KB
一键复制 编辑 原始数据 按行查看 历史
JiangCe0810 提交于 2018-10-16 15:51 +08:00 . 2018/10/16
from __future__ import division
# 导入精确除法
from model import *
from utils.utils import *
from utils.datasets import *
import os
import time
import datetime
import argparse
import random
import torch
from torch.utils.data import DataLoader
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
parser = argparse.ArgumentParser()
parser.add_argument('--image_folder', type=str, default='data/samples', help='data sample')
parser.add_argument('--batch_size', type=int, default=1, help='size of each image batch')
parser.add_argument('--config_path', type=str, default='cfg/WPOD_NET.cfg', help='path to model config file')
parser.add_argument('--weights_path', type=str, default='weights/WPDF_NET.weights', help='path to weights file')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads')
parser.add_argument('--img_size', type=int, default=416, help='size of each images')
parser.add_argument('--use_cuda', type=bool, default=True, help='whether to use cuda')
opt = parser.parse_args()
print(opt)
os.makedirs('output', exist_ok=True)
cuda = opt.use_cuda and torch.cuda.is_available()
model = WPOD_NET(opt.config_path)
model.load_weights(opt.weights_path)
if cuda:
model.cuda()
model.eval()
dataloader = DataLoader(ImageFolder(opt.image_folder, img_size=opt.img_size),
batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
imgs = []
img_detections = []
print("\nPerforming object detection: ")
prev_time = time.time()
for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
input_imgs = Variable(input_imgs.type(Tensor))
with torch.no_grad():
detections = model(input_imgs)
detections = non_max_suppression(detections)
# Log progress
current_time = time.time()
inference_time = datetime.timedelta(seconds=current_time - prev_time)
prev_time = current_time
print('\t+ Batch %d, Inference Time: %s' % (batch_i, inference_time)) # 处理一张图片所需的时间
imgs.extend(img_paths)
img_detections.extend(detections)
# Bounding-box colors
cmap = plt.get_cmap('tab20b')
colors = [cmap(i) for i in np.linspace(0, 1, 20)]
print('\nSavinng images: ')
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
print("(%d) Image: '%s'" % (img_i, path))
img = np.array(Image.open(path))
plt.figure()
fig, ax = plt.subplots(1)
ax.imshow(img)
# The amount of padding that was added
pad_x = max(img.shape[0] - img.shape[1], 0) * (opt.img_size / max(img.shape))
pad_y = max(img.shape[1] - img.shape[0], 0) * (opt.img_size / max(img.shape))
# Image height and width after padding is removed
unpad_h = opt.img_size - pad_y
unpad_w = opt.img_size - pad_x
if detections is not None:
bbox_colors = random.sample(colors, 1)
v1 = detections[0].item()
v2 = detections[1].item()
v3 = detections[2].item()
v4 = detections[3].item()
v5 = detections[4].item()
v6 = detections[5].item()
v7 = detections[6].item()
v8 = detections[7].item()
print('\t conf: %.5f' % v1)
q = np.array([[-0.5, -0.5, 0.5, 0.5], [-0.5, 0.5, 0.5, -0.5]])
pol = (np.dot(np.array([[[max(0, v3), v4], [v5, max(v6,0)]]]), q) + np.array([[v7],[v8]])).reshape(4,2)
bbox = patches.Polygon(pol)
ax.add_patch(bbox)
plt.axis('off')
plt.gca().xaxis.set_major_locator(NullLocator()) # gca获取当前绘图区域 xaxis.set_major_locator(NullLocator())删除x坐标的刻度显示
plt.gca().yaxis.set_major_locator(NullLocator())
plt.savefig('output/%d.png' % (img_i), bbox_inches='tight', pad_inches=0.0)
plt.close()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/aspiretop/lpr.git
git@gitee.com:aspiretop/lpr.git
aspiretop
lpr
车牌识别
master

搜索帮助