代码拉取完成,页面将自动刷新
同步操作将从 yeye0810/车牌识别 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from __future__ import division
# 导入精确除法
from model import *
from utils.utils import *
from utils.datasets import *
import os
import time
import datetime
import argparse
import random
import torch
from torch.utils.data import DataLoader
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
parser = argparse.ArgumentParser()
parser.add_argument('--image_folder', type=str, default='data/samples', help='data sample')
parser.add_argument('--batch_size', type=int, default=1, help='size of each image batch')
parser.add_argument('--config_path', type=str, default='cfg/WPOD_NET.cfg', help='path to model config file')
parser.add_argument('--weights_path', type=str, default='weights/WPDF_NET.weights', help='path to weights file')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads')
parser.add_argument('--img_size', type=int, default=416, help='size of each images')
parser.add_argument('--use_cuda', type=bool, default=True, help='whether to use cuda')
opt = parser.parse_args()
print(opt)
os.makedirs('output', exist_ok=True)
cuda = opt.use_cuda and torch.cuda.is_available()
model = WPOD_NET(opt.config_path)
model.load_weights(opt.weights_path)
if cuda:
model.cuda()
model.eval()
dataloader = DataLoader(ImageFolder(opt.image_folder, img_size=opt.img_size),
batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
imgs = []
img_detections = []
print("\nPerforming object detection: ")
prev_time = time.time()
for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
input_imgs = Variable(input_imgs.type(Tensor))
with torch.no_grad():
detections = model(input_imgs)
detections = non_max_suppression(detections)
# Log progress
current_time = time.time()
inference_time = datetime.timedelta(seconds=current_time - prev_time)
prev_time = current_time
print('\t+ Batch %d, Inference Time: %s' % (batch_i, inference_time)) # 处理一张图片所需的时间
imgs.extend(img_paths)
img_detections.extend(detections)
# Bounding-box colors
cmap = plt.get_cmap('tab20b')
colors = [cmap(i) for i in np.linspace(0, 1, 20)]
print('\nSavinng images: ')
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
print("(%d) Image: '%s'" % (img_i, path))
img = np.array(Image.open(path))
plt.figure()
fig, ax = plt.subplots(1)
ax.imshow(img)
# The amount of padding that was added
pad_x = max(img.shape[0] - img.shape[1], 0) * (opt.img_size / max(img.shape))
pad_y = max(img.shape[1] - img.shape[0], 0) * (opt.img_size / max(img.shape))
# Image height and width after padding is removed
unpad_h = opt.img_size - pad_y
unpad_w = opt.img_size - pad_x
if detections is not None:
bbox_colors = random.sample(colors, 1)
v1 = detections[0].item()
v2 = detections[1].item()
v3 = detections[2].item()
v4 = detections[3].item()
v5 = detections[4].item()
v6 = detections[5].item()
v7 = detections[6].item()
v8 = detections[7].item()
print('\t conf: %.5f' % v1)
q = np.array([[-0.5, -0.5, 0.5, 0.5], [-0.5, 0.5, 0.5, -0.5]])
pol = (np.dot(np.array([[[max(0, v3), v4], [v5, max(v6,0)]]]), q) + np.array([[v7],[v8]])).reshape(4,2)
bbox = patches.Polygon(pol)
ax.add_patch(bbox)
plt.axis('off')
plt.gca().xaxis.set_major_locator(NullLocator()) # gca获取当前绘图区域 xaxis.set_major_locator(NullLocator())删除x坐标的刻度显示
plt.gca().yaxis.set_major_locator(NullLocator())
plt.savefig('output/%d.png' % (img_i), bbox_inches='tight', pad_inches=0.0)
plt.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。