代码拉取完成,页面将自动刷新
同步操作将从 openEuler-RISC-V/tensorflow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
From 6972f9dfe325636b3db4e0bc517ee22a159365c0 Mon Sep 17 00:00:00 2001
From: Mihai Maruseac <mihaimaruseac@google.com>
Date: Thu, 6 May 2021 17:45:51 -0700
Subject: [PATCH] Add missing valuidation to FusedBatchNorm.
---
.../core/kernels/fused_batch_norm_op.cc | 29 ++++++++++++++++++-
1 file changed, 28 insertions(+), 1 deletion(-)
diff --git a/tensorflow/core/kernels/fused_batch_norm_op.cc b/tensorflow/core/kernels/fused_batch_norm_op.cc
index 59470c8a..bd5dab36 100644
--- a/tensorflow/core/kernels/fused_batch_norm_op.cc
+++ b/tensorflow/core/kernels/fused_batch_norm_op.cc
@@ -1267,6 +1267,33 @@ class FusedBatchNormOpBase : public OpKernel {
context, estimated_variance.dims() == 1,
errors::InvalidArgument("estimated_variance must be 1-dimensional",
estimated_variance.shape().DebugString()));
+
+ const auto num_channels = GetTensorDim(x, tensor_format_, 'C');
+ OP_REQUIRES(
+ context, scale.NumElements() == num_channels,
+ errors::InvalidArgument("scale must have the same number of elements "
+ "as the channels of x, got ",
+ scale.NumElements(), " and ", num_channels));
+ OP_REQUIRES(
+ context, offset.NumElements() == num_channels,
+ errors::InvalidArgument("offset must have the same number of elements "
+ "as the channels of x, got ",
+ offset.NumElements(), " and ", num_channels));
+ if (estimated_mean.NumElements() != 0) {
+ OP_REQUIRES(context, estimated_mean.NumElements() == num_channels,
+ errors::InvalidArgument(
+ "mean must be empty or have the same number of "
+ "elements as the channels of x, got ",
+ estimated_mean.NumElements(), " and ",num_channels));
+ }
+ if (estimated_variance.NumElements() != 0) {
+ OP_REQUIRES(context, estimated_variance.NumElements() == num_channels,
+ errors::InvalidArgument(
+ "variance must be empty or have the same number of "
+ "elements as the channels of x, got ",
+ estimated_variance.NumElements(), " and ", num_channels));
+ }
+
if (has_side_input_) {
OP_REQUIRES(context, side_input->shape() == x.shape(),
errors::InvalidArgument(
@@ -1279,7 +1306,7 @@ class FusedBatchNormOpBase : public OpKernel {
// NOTE(ezhulenev): This requirement is coming from implementation
// details of cudnnBatchNormalizationForwardTrainingEx.
OP_REQUIRES(
- context, !is_training_ || x.dim_size(3) % 4 == 0,
+ context, !is_training_ || num_channels % 4 == 0,
errors::InvalidArgument("FusedBatchNorm with activation requires "
"channel dimension to be a multiple of 4."));
}
--
2.23.0
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。