代码拉取完成,页面将自动刷新
同步操作将从 openEuler-RISC-V/tensorflow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
From 4e2565483d0ffcadc719bd44893fb7f609bb5f12 Mon Sep 17 00:00:00 2001
From: Edward Loper <edloper@google.com>
Date: Thu, 29 Jul 2021 09:50:01 -0700
Subject: [PATCH] Fix bug that could cause map_fn to produce incorrect results
(rather than an error) when mapping over a ragged tensor with an
inappropriate fn_output_signature. (Note: there are cases where the default
value for fn_output_signature is not appropriate, so the user needs to
explicitly specify the correct output signature.)
PiperOrigin-RevId: 387606546
Change-Id: Ib4ea27b9634e6ab413f211cfe809a69a90f0e2cd
---
.../kernels/ragged_tensor_from_variant_op.cc | 16 +++++++++++++
.../ops/ragged/ragged_map_fn_op_test.py | 23 +++++++++++++++++++
2 files changed, 39 insertions(+)
diff --git a/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc b/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc
index d9993bb6d3907..c481d90638e4e 100644
--- a/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc
+++ b/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc
@@ -174,7 +174,23 @@ Status NestedStackRaggedTensors(
auto output_values_flat =
output_ragged->mutable_values()->flat_outer_dims<VALUE_TYPE, 2>();
int values_index = 0;
+
+ TensorShape expected_value_shape = component_values_shape;
+ expected_value_shape.RemoveDim(0);
+
for (int i = 0; i < ragged_components.size(); i++) {
+ // Check that the flat_values tensor shape is compatible.
+ TensorShape value_shape = ragged_components[i].values().shape();
+ value_shape.RemoveDim(0);
+ if (value_shape != expected_value_shape) {
+ return errors::InvalidArgument(
+ "All flat_values must have compatible shapes. Shape at index 0: ",
+ expected_value_shape, ". Shape at index ", i, ": ", value_shape,
+ ". If you are using tf.map_fn, then you may need to specify an "
+ "explicit fn_output_signature with appropriate ragged_rank, and/or "
+ "convert output tensors to RaggedTensors.");
+ }
+
auto component_values_flat =
ragged_components[i].values().flat_outer_dims<VALUE_TYPE, 2>();
int num_inner_elements = ragged_components[i].values().NumElements();
diff --git a/tensorflow/python/ops/ragged/ragged_map_fn_op_test.py b/tensorflow/python/ops/ragged/ragged_map_fn_op_test.py
index bead4923a0a4c..ace724ac8711d 100644
--- a/tensorflow/python/ops/ragged/ragged_map_fn_op_test.py
+++ b/tensorflow/python/ops/ragged/ragged_map_fn_op_test.py
@@ -21,9 +21,11 @@
import numpy as np
from tensorflow.python.framework import dtypes
+from tensorflow.python.framework import errors
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import map_fn as map_fn_lib
from tensorflow.python.ops import math_ops as mo
from tensorflow.python.ops import string_ops
from tensorflow.python.ops.ragged import ragged_factory_ops
@@ -309,6 +311,27 @@ def testMapOnSparseTensor(self):
)
self.assertAllEqual(id_t2, [[0, 5], [0, 4]])
+ def testRaggedMapWithIncorrectFnOutputSignature(self):
+ x = ragged_factory_ops.constant([[1, 2, 3, 4], [1]])
+ with self.assertRaisesRegex(errors.InvalidArgumentError,
+ 'All flat_values must have compatible shapes'):
+ y = map_fn_lib.map_fn(lambda r: map_fn_lib.map_fn(lambda y: r, r), x)
+ self.evaluate(y)
+
+ def testNestedRaggedMapWithFnOutputSignature(self):
+ ragged1d = ragged_tensor.RaggedTensorSpec([None], dtypes.int32)
+ ragged2d = ragged_tensor.RaggedTensorSpec([None, None], dtypes.int32)
+
+ x = ragged_factory_ops.constant([[1, 2, 3, 4], [1]])
+ # pylint: disable=g-long-lambda
+ y = map_fn_lib.map_fn(
+ lambda r: map_fn_lib.map_fn(
+ lambda y: r, r, fn_output_signature=ragged1d),
+ x,
+ fn_output_signature=ragged2d)
+ expected = [[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]], [[1]]]
+ self.assertAllEqual(y, expected)
+
if __name__ == '__main__':
googletest.main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。