代码拉取完成,页面将自动刷新
# Base UBI image for s390x architecture
ARG BASE_UBI_IMAGE_TAG=9.5-1736404155
ARG PYTHON_VERSION=3.12
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS base
# Install basic dependencies
ARG PYTHON_VERSION
ENV PYTHON_VERSION=${PYTHON_VERSION}
WORKDIR /workspace
ENV LANG=C.UTF-8 \
LC_ALL=C.UTF-8
# Install development utilities
RUN microdnf install -y \
which procps findutils tar vim git gcc gcc-gfortran g++ make patch zlib-devel \
libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \
openssl-devel openblas openblas-devel autoconf automake libtool cmake && \
microdnf clean all
# Python Installation
FROM base AS python-install
ARG PYTHON_VERSION
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV PYTHON_VERSION=${PYTHON_VERSION}
RUN microdnf install -y \
python${PYTHON_VERSION}-devel python${PYTHON_VERSION}-pip python${PYTHON_VERSION}-wheel && \
python${PYTHON_VERSION} -m venv $VIRTUAL_ENV && pip install --no-cache -U pip wheel uv && microdnf clean all
FROM python-install AS pyarrow
# Build Apache Arrow
WORKDIR /tmp
RUN --mount=type=cache,target=/root/.cache/uv \
git clone https://github.com/apache/arrow.git && \
cd arrow/cpp && \
mkdir release && cd release && \
cmake -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=/usr/local \
-DARROW_PYTHON=ON \
-DARROW_PARQUET=ON \
-DARROW_ORC=ON \
-DARROW_FILESYSTEM=ON \
-DARROW_WITH_LZ4=ON \
-DARROW_WITH_ZSTD=ON \
-DARROW_WITH_SNAPPY=ON \
-DARROW_JSON=ON \
-DARROW_CSV=ON \
-DARROW_DATASET=ON \
-DPROTOBUF_PROTOC_EXECUTABLE=/usr/bin/protoc \
-DARROW_DEPENDENCY_SOURCE=BUNDLED \
.. && \
make -j$(nproc) && \
make install && \
cd ../../python && \
export PYARROW_PARALLEL=4 && \
export ARROW_BUILD_TYPE=release && \
uv pip install -r requirements/build.txt && \
python setup.py build_ext --build-type=$ARROW_BUILD_TYPE --bundle-arrow-cpp bdist_wheel
FROM python-install AS numa-build
# Install numactl (needed for numa.h dependency)
WORKDIR /tmp
RUN curl -LO https://github.com/numactl/numactl/archive/refs/tags/v2.0.16.tar.gz && \
tar -xvzf v2.0.16.tar.gz && \
cd numactl-2.0.16 && \
./autogen.sh && \
./configure && \
make
# Set include path
ENV C_INCLUDE_PATH="/usr/local/include:$C_INCLUDE_PATH"
FROM python-install AS rust
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
RUN curl https://sh.rustup.rs -sSf | sh -s -- -y && \
. "$CARGO_HOME/env" && \
rustup default stable && \
rustup show
FROM python-install AS torch-vision
# Install torchvision
ARG TORCH_VERSION=2.7.0.dev20250304
ARG TORCH_VISION_VERSION=v0.20.1
WORKDIR /tmp
RUN --mount=type=cache,target=/root/.cache/uv \
git clone https://github.com/pytorch/vision.git && \
cd vision && \
git checkout $TORCH_VISION_VERSION && \
uv pip install -v torch==${TORCH_VERSION} --extra-index-url https://download.pytorch.org/whl/nightly/cpu && \
python setup.py bdist_wheel
# Final build stage
FROM python-install AS vllm-cpu
ARG PYTHON_VERSION
# Set correct library path for torch and numactl
ENV LD_LIBRARY_PATH="/opt/vllm/lib64/python${PYTHON_VERSION}/site-packages/torch/lib:/usr/local/lib:$LD_LIBRARY_PATH"
ENV C_INCLUDE_PATH="/usr/local/include:$C_INCLUDE_PATH"
ENV UV_LINK_MODE=copy
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
COPY . /workspace/vllm
WORKDIR /workspace/vllm
RUN --mount=type=bind,from=numa-build,src=/tmp/numactl-2.0.16,target=/numactl \
make -C /numactl install
# Install dependencies, including PyTorch and Apache Arrow
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
--mount=type=bind,from=pyarrow,source=/tmp/arrow/python/dist,target=/tmp/arrow-wheels \
--mount=type=bind,from=torch-vision,source=/tmp/vision/dist,target=/tmp/vision-wheels/ \
sed -i '/^torch/d' requirements/build.txt && \
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl | head -n 1) && \
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl | head -n 1) && \
uv pip install -v \
$ARROW_WHL_FILE \
$VISION_WHL_FILE \
--extra-index-url https://download.pytorch.org/whl/nightly/cpu \
--index-strategy unsafe-best-match \
-r requirements/build.txt \
-r requirements/cpu.txt
# Build and install vllm
RUN --mount=type=cache,target=/root/.cache/uv \
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
uv pip install "$(echo dist/*.whl)[tensorizer]"
# setup non-root user for vllm
RUN umask 002 && \
useradd --uid 2000 --gid 0 vllm && \
mkdir -p /home/vllm && \
chmod g+rwx /home/vllm
COPY LICENSE /licenses/vllm.md
COPY examples/*.jinja /app/data/template/
USER 2000
WORKDIR /home/vllm
# Set the default entrypoint
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。