# TensorFlowjs **Repository Path**: leftbehindmatches/TensorFlowjs ## Basic Information - **Project Name**: TensorFlowjs - **Description**: TensorFlow.js 是一个开源硬件加速 JavaScript 库,用于训练和部署机器学习模型 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 13 - **Created**: 2018-04-03 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TensorFlow.js TensorFlow.js is an open-source hardware-accelerated JavaScript library for training and deploying machine learning models. **Develop ML in the Browser**
Use flexible and intuitive APIs to build models from scratch using the low-level JavaScript linear algebra library or the high-level layers API. **Run Existing models**
Use TensorFlow.js model converters to run pre-existing TensorFlow models right in the browser. **Retrain Existing models**
Retrain pre-existing ML models using sensor data connected to the browser, or other client-side data. ## Importing You can import TensorFlow.js directly via yarn or npm: `yarn add @tensorflow/tfjs` or `npm install @tensorflow/tfjs`. Alternatively you can use a script tag. The library will be available as a global variable named `tf`: ```html ``` You can also specify which version to load replacing `@latest` with a specific version string (e.g. `0.6.0`). ## About this repo This repository contains the logic and scripts that combine two packages: - [TensorFlow.js Core](https://github.com/tensorflow/tfjs-core), a flexible low-level API, formerly known as *deeplearn.js*. - [TensorFlow.js Layers](https://github.com/tensorflow/tfjs-layers), a high-level API which implements functionality similar to [Keras](https://keras.io/). If you care about bundle size, you can import those packages individually. ## Examples Check out our [examples repository](https://github.com/tensorflow/tfjs-examples) and our [tutorials](https://js.tensorflow.org/tutorials/). ## Migrating from deeplearn.js See [these release notes](https://github.com/tensorflow/tfjs-core/releases/tag/v0.6.0) for how to migrate from deeplearn.js to TensorFlow.js. ## Getting started Let's add a scalar value to a vector. TensorFlow.js supports _broadcasting_ the value of scalar over all the elements in the tensor. ```js import * as tf from '@tensorflow/tfjs'; // If not loading the script as a global const a = tf.tensor1d([1, 2, 3]); const b = tf.scalar(2); const result = a.add(b); // a is not modified, result is a new tensor result.data().then(data => console.log(data)); // Float32Array([3, 4, 5] // Alternatively you can use a blocking call to get the data. // However this might slow your program down if called repeatedly. console.log(result.dataSync()); // Float32Array([3, 4, 5] ``` See the [core-concepts tutorial](https://js.tensorflow.org/tutorials/core-concepts.html) for more. Now, let's build a toy model to perform linear regression. ```js import * as tf from '@tensorflow/tfjs'; // A sequential model is a container which you can add layers to. const model = tf.sequential(); // Add a dense layer with 1 output unit. model.add(tf.layers.dense({units: 1, inputShape: [1]})); // Specify the loss type and optimizer for training. model.compile({loss: 'meanSquaredError', optimizer: 'sgd'}); // Generate some synthetic data for training. const xs = tf.tensor2d([[1], [2], [3], [4]], [4, 1]); const ys = tf.tensor2d([[1], [3], [5], [7]], [4, 1]); // Train the model. await model.fit(xs, ys, {epochs: 500}); // After the training, perform inference. const output = model.predict(tf.tensor2d([[5]], [1, 1])); output.print(); ``` For a deeper dive into building models, see the [MNIST tutorial](https://js.tensorflow.org/tutorials/mnist.html) ## Importing pre-trained models We support porting pre-trained models from: - [TensorFlow SavedModel](https://github.com/tensorflow/tfjs-converter) - [Keras](https://js.tensorflow.org/tutorials/import-keras.html) ## Find out more [TensorFlow.js](https://js.tensorflow.org) is a part of the [TensorFlow](https://www.tensorflow.org) ecosystem. For more info: - [js.tensorflow.org](https://js.tensorflow.org) - [Tutorials](https://js.tensorflow.org/tutorials) - [API reference](https://js.tensorflow.org/api/latest/) - [Help mailing list](https://groups.google.com/a/tensorflow.org/forum/#!forum/tfjs)