代码拉取完成,页面将自动刷新
What the l1 addition is
=======================
A slight modification that allows l1 regularized LikelihoodModel.
Regularization is handled by a fit_regularized method.
Main Files
==========
l1_demo/demo.py
$ python demo.py --get_l1_slsqp_results logit
does a quick demo of the regularization using logistic regression.
l1_demo/sklearn_compare.py
$ python sklearn_compare.py
Plots a comparison of regularization paths. Modify the source to use
different datasets.
statsmodels/base/l1_cvxopt.py
fit_l1_cvxopt_cp()
Fit likelihood model using l1 regularization. Use the CVXOPT package.
Lots of small functions supporting fit_l1_cvxopt_cp
statsmodels/base/l1_slsqp.py
fit_l1_slsqp()
Fit likelihood model using l1 regularization. Use scipy.optimize
Lots of small functions supporting fit_l1_slsqp
statsmodels/base/l1_solvers_common.py
Common methods used by l1 solvers
statsmodels/base/model.py
Likelihoodmodel.fit()
3 lines modified to allow for importing and calling of l1 fitting functions
statsmodels/discrete/discrete_model.py
L1MultinomialResults class
Child of MultinomialResults
MultinomialModel.fit()
3 lines re-directing l1 fit results to the L1MultinomialResults class
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。