代码拉取完成,页面将自动刷新
import pandas as pd
import numpy as np
from matplotlib import *
#.........................Series.......................#
x1=np.array([1,2,3,4])
s=pd.Series(x1,index=[1,2,3,4])
print(s)
#.......................DataFrame......................#
x2=np.array([1,2,3,4,5,6])
s=pd.DataFrame(x2)
print(s)
x3=np.array([['Alex',10],['Nishit',21],['Aman',22]])
s=pd.DataFrame(x3,columns=['Name','Age'])
print(s)
data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4'])
print (df)
data=[{'a':1,'b':2},{'a':3,'b':4,'c':5}]
df=pd.DataFrame(data)
print(df)
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print (df)
#....Adding New column......#
data={'one':pd.Series([1,2,3,4],index=[1,2,3,4]),
'two':pd.Series([1,2,3],index=[1,2,3])}
df=pd.DataFrame(data)
print(df)
df['three']=pd.Series([1,2],index=[1,2])
print(df)
#......Deleting a column......#
data={'one':pd.Series([1,2,3,4],index=[1,2,3,4]),
'two':pd.Series([1,2,3],index=[1,2,3]),
'three':pd.Series([1,1],index=[1,2])
}
df=pd.DataFrame(data)
print(df)
del df['one']
print(df)
df.pop('two')
print(df)
#......Selecting a particular Row............#
data={'one':pd.Series([1,2,3,4],index=[1,2,3,4]),
'two':pd.Series([1,2,3],index=[1,2,3]),
'three':pd.Series([1,1],index=[1,2])
}
df=pd.DataFrame(data)
print(df.loc[2])
print(df[1:4])
#.........Addition of Row.................#
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])
df = df.append(df2)
print (df.head())
#........Deleting a Row..................#
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])
df = df.append(df2)
# Drop rows with label 0
df = df.drop(0)
print (df)
#..........................Functions.....................................#
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
df = pd.DataFrame(d)
print ("The transpose of the data series is:")
print (df.T)
print(df.shape)
print(df.size)
print(df.values)
#.........................Statistics.......................................#
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}
df = pd.DataFrame(d)
print (df.sum())
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])
}
df = pd.DataFrame(d)
print (df.describe(include='all'))
#.......................Sorting..........................................#
#Using the sort_index() method, by passing the axis arguments and the order of sorting,
# DataFrame can be sorted. By default, sorting is done on row labels in ascending order.
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df=unsorted_df.sort_index()
print (sorted_df)
sorted_df = unsorted_df.sort_index(ascending=False)
print (sorted_df)
#By passing the axis argument with a value 0 or 1,
#the sorting can be done on the column labels. By default, axis=0, sort by row.
#Let us consider the following example to understand the same.
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df=unsorted_df.sort_index(axis=1)
print(sorted_df)
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1',kind='mergesort')
# print (sorted_df)
#...........................SLICING...............................#
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
# Select all rows for multiple columns, say list[]
print (df.loc[:,['A','C']])
print (df.loc[['a','b','f','h'],['A','C']])
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
# Index slicing
print df.ix[:,'A']
#............................statistics......................#
s = pd.Series([1,2,3,4,5,4])
print s.pct_change()
df = pd.DataFrame(np.random.randn(5, 2))
print (df.pct_change())
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D'])
print(df.rolling(window=3).mean())
print (df.expanding(min_periods=3).mean())
#........................MISSING DATA............................................#
df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one',
'two', 'three'])
df = df.reindex(['a', 'b', 'c'])
print df
print ("NaN replaced with '0':")
print(df.fillna(0))
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
print(df.fillna(method='pad'))
print(df.fillna(method='bfill'))
print(df.dropna())
print(df.dropna(axis=1))
#.........................Grouping...............................................#
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year')
for name,group in grouped:
print (name)
print (group)
print (grouped.get_group(2014))
grouped = df.groupby('Team')
print (grouped['Points'].agg([np.sum, np.mean, np.std]))
#...............................Reading a Csv File............................#
data=pd.read_csv("dat.csv")
print(data)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。