代码拉取完成,页面将自动刷新
同步操作将从 Renovamen/Intrusion-Detection 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
def mle(bn, data):
nodes = list(bn.nodes())
F = dict([(rv, {}) for rv in nodes])
for i, n in enumerate(nodes):
F[n]['values'] = list(np.unique(data[:,i]))
bn.F[n]['values'] = list(np.unique(data[:,i]))
obs_dict = dict([(rv,[]) for rv in nodes])
for rv in nodes:
p_idx = int(np.prod([bn.card(p) for p in bn.parents(rv)])*bn.card(rv))
F[rv]['cpt'] = [0]*p_idx
bn.F[rv]['cpt'] = [0]*p_idx
for row in data:
for rv in nodes:
obs_dict[rv] = row[rv]
for rv in nodes:
rv_dict= { n: obs_dict[n] for n in obs_dict if n in bn.scope(rv) }
offset = bn.cpt_indices(target = rv, val_dict = rv_dict)[0]
F[rv]['cpt'][offset]+=1
for rv in nodes:
F[rv]['parents'] = [var for var in nodes if rv in bn.E[var]]
for i in range(0,len(F[rv]['cpt']),bn.card(rv)):
temp_sum = float(np.sum(F[rv]['cpt'][i:(i+bn.card(rv))]))
for j in range(bn.card(rv)):
F[rv]['cpt'][i+j] /= (temp_sum+1e-7)
F[rv]['cpt'][i+j] = round(F[rv]['cpt'][i+j],5)
bn.F = F
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。